[1]王怡昕,刘文忠.一类3-正则射影平面图的3-分解问题[J].集美大学学报(自然科学版),2025,(6):594-599.
WANG Yixin,LIU Wenzhong.3-Decomposition for a Class of Cubic Graphs on the Projective Plane[J].Journal of Jimei University,2025,(6):594-599.
点击复制
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
- 期数:
-
2025年第6期
- 页码:
-
594-599
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2025-11-25
文章信息/Info
- Title:
-
3-Decomposition for a Class of Cubic Graphs on the Projective Plane
- 作者:
-
王怡昕; 刘文忠
-
(南京航空航天大学数学学院,江苏 南京 211106)
- Author(s):
-
WANG Yixin; LIU Wenzhong
-
(School of Mathematics,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
-
- 关键词:
-
图的分解; 射影平面图; 3-分解猜想
- Keywords:
-
decompositions of graphs; projectiveplanar graph; 3-decomposition conjecture
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
A
- 摘要:
-
3-分解猜想表明:每一个连通的3-正则图都能分解成一个生成树、一个圈集和一个匹配。设图G是一个连通3-正则射影平面图。从G中删除所有不可分离圈和割边,并压缩产生的所有2-度点,所得到的图是由多个2-连通分支组成的3-正则图,其中最多存在一个非平面分支。当所得的图不存在非平面分支时,本文证明3-分解猜想对图G成立;当所得的图存在一个非平面分支时,本文证明,若该分支的最小欧拉亏格嵌入包含2-面圈,3-面圈或4-面圈,则3-分解猜想对图G成立。
- Abstract:
-
The 3-decomposition conjecture states that every connected cubic graph can be decomposed into a spanning tree,a family of cycles and a matching.Let G be a connected cubic graph on the projective plane.We remove all non-separating cycles and cut-edges from G and suppress all resulting degree-two vertices.Then we obtain a cubic graph consisting of 2-connected components in which there is at most one non-planar component.If the resulting graph does not have a non-planar component,then the 3-Decomposition Conjecture holds for G.Otherwise,the resulting graph has only one non-planar component.We prove that if the minimal Euler genus embedding of the non-planar component φG’ has a 2-facial cycle,a 3-facial cycle,or a 4-facial cycle,the conjecture is true for G.
参考文献/References:
相似文献/References:
更新日期/Last Update:
2025-12-22