|本期目录/Table of Contents|

[1]李浩天,戴乐阳,王永坚,等.改进粒子群优化的铁谱图像聚类分割[J].集美大学学报(自然科学版),2025,(1):95-102.
 LI Haotian,DAI Leyang,WANG Yongjian,et al.Clustering Segmentation of Ferrograph Images Based on Improved Particle Swarm Optimization[J].Journal of Jimei University,2025,(1):95-102.
点击复制

改进粒子群优化的铁谱图像聚类分割(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
期数:
2025年第1期
页码:
95-102
栏目:
数理科学与信息工程
出版日期:
2025-01-23

文章信息/Info

Title:
Clustering Segmentation of Ferrograph Images Based on Improved Particle Swarm Optimization
作者:
李浩天12戴乐阳12王永坚12宋佳声12
1.集美大学轮机工程学院,福建 厦门361021;2.福建省船舶与海洋工程重点实验室,福建 厦门 361021
Author(s):
LI Haotian12DAI Leyang12WANG Yongjian12SONG Jiasheng12
1.School of Marine Engineering,Jimei University,Xiamen 361021,China;2.Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering,Xiamen 361021,China
关键词:
铁谱图像分割聚类粒子群优化模拟退火
Keywords:
Ferrograph image segmentationclusteringparticle swarm optimizationsimulated annealing
分类号:
-
DOI:
-
文献标志码:
A
摘要:
在采用K均值聚类算法对铁谱图像进行分割时,由于初始聚类中心的随机性和铁谱图像的复杂性,常出现误分割现象,影响后续铁谱分析的效果。为了解决这一问题,采用基于归一化RGB颜色模型,引入模拟退火优化的自适应粒子群算法,对K均值聚类方法进行优化,可以有效缓解误分割问题,并取得全局最优搜索能力和收敛速度之间的平衡。实验结果表明,改进算法提高了铁谱图像的分割精度,并保证了运行效率。
Abstract:
When using K means clustering algorithm to segment ferrography images,due to the randomness of initial clustering center and the complexity of ferrography image,missegmentation will occur,which will affect the effectiveness of subsequent ferrography analysis.In order to solve the problem,based on the normalized RGB color model,the K means clustering method is optimized by introducing the simulated annealing optimization adaptive particle swarm optimization algorithm,which can effectively alleviate the problem of missegmentation.At the same time,the algorithm can achieve a balance between the global optimal solution searching ability and the convergence speed.The experimental results show that the improved algorithm improves the segmentation accuracy of ferrograph images and ensures operational efficiency.

参考文献/References:

相似文献/References:

备注/Memo

备注/Memo:
更新日期/Last Update: 2025-03-10