|本期目录/Table of Contents|

[1]陈娟.采样数据P型迭代学习下非线性系统的收敛分析[J].集美大学学报(自然科学版),2025,(3):292-298.
 CHEN Juan.Convergence Analysis of Nonlinear Systems Under Sampled-Data P-Type Iterative Learning[J].Journal of Jimei University,2025,(3):292-298.
点击复制

采样数据P型迭代学习下非线性系统的收敛分析(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
期数:
2025年第3期
页码:
292-298
栏目:
数理科学与信息工程
出版日期:
2025-05-28

文章信息/Info

Title:
Convergence Analysis of Nonlinear Systems Under Sampled-Data P-Type Iterative Learning
作者:
陈娟
集美大学理学院,福建 厦门 361021
Author(s):
CHEN Juan
School of Science,Jimei University,Xiamen 361021,China
关键词:
迭代学习控制收敛性采样数据系统非线性系统
Keywords:
iterative learning controlconvergencesampled-data systemsnonlinear systems
分类号:
-
DOI:
-
文献标志码:
A
摘要:
基于采样数据P型迭代学习控制下非线性系统,提出一种新的收敛分析方法。该方法将数学归纳法(MI)与压缩映射原理(CMP)相结合,以证明系统变量的有界性和有限迭代时跟踪误差的有界收敛性。然后利用反证法(PBC)以及MI-CMP进一步证明了任何迭代中跟踪误差的鲁棒收敛性,该收敛性与迭代变化不确定性和采样周期的边界相关。通过一阶线性系统的数值仿真,所提方法在5次迭代内实现跟踪误差从0.5至0.000 8的指数收敛,且控制输入始终有界,验证了理论的有效性和工程实用性。
Abstract:
This paper studies the nonlinear systems based on sampled-data P-type iterative learning control and proposes a new convergence analysis method.The method combines mathematical induction(MI)and the contraction mapping principle (CMP) to prove the boundary of system variables and the bounded convergence of the tracking errors in a finite number of iterations.Then,using the method of contradiction (PBC) and MI-CMP,it further proves the robust convergence of the tracking errors in any iteration,which is related to the uncertainty of iteration variation and the boundary of sampling period.Through numerical simulations on a first-order linear system,the proposed method achieves exponential convergence of the tracking errors from 0.5 to 0.000 8 within 5 iterations,while ensuring bounded control inputs,thereby validating both the theoretical effectiveness and engineering practicality.

参考文献/References:

-

相似文献/References:

[1]靳珊,梁宗旗.分数阶非线性Schrodinger方程的时间分裂算法[J].集美大学学报(自然科学版),2018,23(1):63.
 JIN Shan,LIANG Zongqi.Timesplitting Method for the Fractional Nonlinear Schrodinger Equation[J].Journal of Jimei University,2018,23(3):63.
[2]闫瑞娥,梁宗旗.具波动算子非线性Schrodinger方程线性化差分格式[J].集美大学学报(自然科学版),2020,25(2):146.
 YAN Ruie,LIANG Zongqi.Linearized Difference Scheme for Nonlinear Schrodinger Equation with Wave Operator[J].Journal of Jimei University,2020,25(3):146.
[3]陈景华,陈雪娟.Riesz空间分布阶的分数阶扩散方程的数值模拟[J].集美大学学报(自然科学版),2021,26(2):97.
 CHEN Jinghua,CHEN Xuejuan.Numerical Method for the Distributed-Order Riesz Space Fractional Diffusion Equation[J].Journal of Jimei University,2021,26(3):97.
[4]靳珊,梁宗旗.分数阶非线性Schrodinger方程的守恒算法[J].集美大学学报(自然科学版),2021,26(5):465.
 JIN Shan,LIANG Zongqi.A Conservative Method for the Fractional Nonlinear Schrodinger Equation[J].Journal of Jimei University,2021,26(3):465.
[5]丁鹏,梁宗旗.时间分数阶Klein-Gordon方程的有限差分方法[J].集美大学学报(自然科学版),2023,28(5):421.
 DING Peng,LIANG Zongqi.Finite Difference Method of Time Fractional Klein-Gordon Equation[J].Journal of Jimei University,2023,28(3):421.
[6]杨郑亚,陈雪娟,梁宗旗.基于谱延迟校正的分数阶扩散方程的数值解法[J].集美大学学报(自然科学版),2024,29(5):468.
 YANG Zhengya,CHEN Xuejuan,LIANG Zongqi.Numerical Solution of Time Fractional Diffusion Equation Based on Spectral Deferred Correction[J].Journal of Jimei University,2024,29(3):468.
[7]刘欣然,陈景华,龚珊珊.Caputo-Hadamard时间分数阶反应扩散方程的L1格式差分逼近[J].集美大学学报(自然科学版),2024,29(6):481.
 LIU Xinran,CHEN Jinghua,GONG Shanshan.L1 Scheme Difference Approximation for Caputo-Hadamard Time Fractional ReactionDiffusion Equation[J].Journal of Jimei University,2024,29(3):481.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2025-06-16