[1]王钰涵,黄振坤,宾红华.基于间歇边界控制的ODE-PDE渐近稳定性[J].集美大学学报(自然科学版),2025,(4):389-394.
WANG Yuhan,HUANG Zhenkun,BIN Honghua.Asymptotic Stability of ODE-PDE Based on Intermittent Boundary Control[J].Journal of Jimei University,2025,(4):389-394.
点击复制
基于间歇边界控制的ODE-PDE渐近稳定性(PDF)
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
- 期数:
-
2025年第4期
- 页码:
-
389-394
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2025-07-28
文章信息/Info
- Title:
-
Asymptotic Stability of ODE-PDE Based on Intermittent Boundary Control
- 作者:
-
王钰涵; 黄振坤; 宾红华
-
集美大学理学院,福建 厦门 361021
- Author(s):
-
WANG Yuhan; HUANG Zhenkun; BIN Honghua
-
School of Science,Jimei University,Xiamen 361021,China
-
- 关键词:
-
ODE-双曲型PDE级联系统; 非周期间歇边界控制; 渐近稳定性
- Keywords:
-
ODE-hyperbolic PDE cascade system; aperiodic intermittent boundary control; asymptotic stability
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
A
- 摘要:
-
采用一种非周期间歇边界控制方法,研究一类一阶常微分方程(ordinary differential equations,ODE)和双曲型偏微分方程(partial differential equations,PDE)级联系统的渐近稳定性问题。通过控制周期和控制宽度均不固定的间歇边界控制,利用李雅普诺夫函数和微分不等式,得到一类一阶ODE-双曲型PDE级联系统渐近稳定的充分条件。最后,通过数值模拟验证所得结果的有效性。
- Abstract:
-
In this paper,an aperiodic intermittent boundary control method was used to study the asymptotic stability of a cascaded system of first-order ordinary differential equations (ODE) and hyperbolic partial differential equations (PDE).The sufficient condition for the asymptotic stability of a class of first-order ODE hyperbolic PDE cascade systems was obtained by using Lyapunov functions and differential inequalities through intermittent boundary control with unfixed control period and control width.Finally,the validity of the obtained results was verified by numerical simulation.
参考文献/References:
相似文献/References:
更新日期/Last Update:
2025-09-07