|本期目录/Table of Contents|

[1]周臻,詹华税.一类非线性退化抛物方程的解[J].集美大学学报(自然科学版),2017,22(6):70-73.
 ZHOU Zhen,ZHAN Huashui.Solutions of a Nonlinear Degenerate Parabolic Equation[J].Journal of Jimei University,2017,22(6):70-73.
点击复制

一类非线性退化抛物方程的解(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第22卷
期数:
2017年第6期
页码:
70-73
栏目:
数理科学与信息工程
出版日期:
2017-11-28

文章信息/Info

Title:
Solutions of a Nonlinear Degenerate Parabolic Equation
作者:
周臻1詹华税2
(1.集美大学理学院,福建 厦门 361021;2.厦门理工学院应用数学学院,福建 厦门 361024)
Author(s):
ZHOU Zhen1ZHAN Huashui2
(1.School of Science,Jimei University,Xiamen 361021,China;2.School of Applied Mathematics,Xiamen University of Technology,Xiamen 361024,China)
关键词:
非线性方程边界退化稳定性存在性
Keywords:
nonlinear equationsboundary degeneracystabilityexistence
分类号:
-
DOI:
-
文献标志码:
A
摘要:
在带权常指数索伯列夫空间中讨论一类非线性方程的解的适定性问题。方程ut=div(a(x) ∣?u∣p-2?u)+f(u,x,t)中,a(x)在边界退化。在一定条件下,方程解的稳定性可不依赖于边界条件而完全由初值控制。
Abstract:
The problem of wellposedness of solutions for a nonlinear equation was discussed in weighted Sobolev space with constant exponent.For equation ut=div(a(x) ∣?u∣p-2?u)+f(u,x,t),a(x)was degenerate on the boundary.Under certain conditions,the stability of the solution did not depend on the boundary conditions but was controlled by the initial value completely.

参考文献/References:

-

相似文献/References:

[1]谢清梅,詹华税.带有吸附项的边界扩散退化抛物方程解的性质[J].集美大学学报(自然科学版),2012,17(1):71.
 XIE Qing-meiZHAN Hua-shui.Properties of the Boundary Degenerate ParabolicEquation with Adsorption Item[J].Journal of Jimei University,2012,17(6):71.
[2]许文彬.p-拉普拉斯抛物型方程解的稳定性[J].集美大学学报(自然科学版),2016,21(6):471.
 XU Wen-bin.On the Stability of a Parabolic Equation Related to the p-Laplacian[J].Journal of Jimei University,2016,21(6):471.
[3]谢清梅,詹华税.边界退化的奇异扩散方程解的正则性[J].集美大学学报(自然科学版),2011,16(5):389.
 XIE Qing-mei,ZHAN Hua-shui.The Regular Properties of the Singular DiffusionEquation with Boundary Degeneracy[J].Journal of Jimei University,2011,16(6):389.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-12-28