[1]李颖,郑新旺,何雨青,等.WSN中基于信道传播特性的室内跟踪定位算法[J].集美大学学报(自然版),2018,23(5):395-400.
 LI Ying,ZHENG Xinwang,HE Yuqing,et al.Positing and Tracking Algorithm Based on Channel Propagating Characteristic for Indoor Wireless Sensor Network[J].Journal of Jimei University,2018,23(5):395-400.
点击复制

WSN中基于信道传播特性的室内跟踪定位算法()
分享到:

《集美大学学报(自然版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第23卷
期数:
2018年第5期
页码:
395-400
栏目:
数理科学与信息工程
出版日期:
2018-09-28

文章信息/Info

Title:
Positing and Tracking Algorithm Based on Channel Propagating Characteristic for Indoor Wireless Sensor Network
作者:
李颖1郑新旺1何雨青2胡妮娜2杨光松2
(1.集美大学诚毅学院,福建 厦门 361021;2.集美大学信息工程学院,福建 厦门 361021)
Author(s):
LI Ying1ZHENG Xinwang1HE Yuqing2HU Nina2YANG Guangsong2
(1.Chengyi University College,Jimei University,Xiamen 361021,China;2.School of Information Technology,Jimei University,Xiamen 361021,China)
关键词:
无线传感网络信道传播特性跟踪最大似然法
Keywords:
wireless sensor network propagating characteristic of channeltrackingmaximum likelihood
文献标志码:
A
摘要:
针对传统的RSSI(received signal strength indication)定位方法会受到室内无线信道传播特性影响的问题,首先在密闭走廊、开放走廊和实验室三种不同场景下,对无线信号强度进行测试并统计其概率分布,构建室内无线信道传播特性模型。然后,锚节点定期测量移动节点信标信号的RSSI,中心节点利用最大似然法和信道传播特性模型来估算其坐标位置、移动速度和行进方向。实验结果证明,该方案可以实现不同室内环境下移动节点的跟踪定位,并满足精度要求。
Abstract:
The indoor wireless channel has an effect on the traditional RSSI (Received Signal Strength Indication) positioning method.To solve the problem,the positing and tracking method has been studied in this paper.Firstly,the indoor channel propagation model is established by actual measurement and fitting analysis of wireless signal strength in three different scenarios,which included closed corridor,open corridor and laboratory.The anchors measure RSSI of mobile anchor beacon regularly.The center node estimates the coordinates of the location,moving speed and direction by using the Maximum Likelihood method and indoor channel propagation model.Simulation results prove that the proposed scheme is effective and can meet the precision realtime requirements of indoor tracking localization in different indoor environments.
更新日期/Last Update: 2018-11-08