[1]索永峰,陈文科,杨神化,等.基于深度神经网络的船舶交通流预测[J].集美大学学报(自然版),2020,25(6):430-436.
 SUO Yongfeng,CHEN Wenke,YANG Shenhua,et al.Prediction of Ship Traffic Flow Based on Deep Neural Network[J].Journal of Jimei University,2020,25(6):430-436.
点击复制

基于深度神经网络的船舶交通流预测()
分享到:

《集美大学学报(自然版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第25卷
期数:
2020年第6期
页码:
430-436
栏目:
航海技术与物流工程
出版日期:
2020-12-19

文章信息/Info

Title:
Prediction of Ship Traffic Flow Based on Deep Neural Network
作者:
索永峰陈文科杨神化陈立媛
(集美大学航海学院,福建 厦门 361021 )
Author(s):
SUO YongfengCHEN WenkeYANG ShenhuaCHEN Liyuan
(Navigation College,Jimei University,Xiamen 361021,China)
关键词:
船舶交通流量深度学习LSTMGRU
Keywords:
ship traffic flowdeep learningLSTMGRU
摘要:
为了准确预测船舶交通流量,构建一种利用特定数据集进行船舶交通流量预测的深度学习模型。选定海域横断面,统计规定时间段内穿越该海域横断面的船舶AIS数据,将这些数据筛选后作为数据集。选取GRU(gate recurrent unit)模型最佳结构和参数,对一天内的船舶流量进行预测,并选取LSTM(long short term memory)循环神经网络模型和SAES栈式编码器预测模型作为实验对照组模型,在合理参数范围内对不同参数组合进行实验。实验结果表明,与LSTM模型和SAES(stacked auto-encoders)模型相比,GRU模型预测精度更高,能适应数据规律性较弱的船舶交通流量预测的要求。
Abstract:
In order to accurately predict the traffic flow of ships,a depth-learning model for predicting the traffic flow based on a specific data set is constructed:The sea cross section is selected,and the AIS data of ships traversing the sea cross section in a specified period of time are statistically analyzed,which are then filtered and used as a dataset.The LSTM and its improved network GRU are selected as the research object,and the model parameters are adjusted to carry out the comparative analysis of several groups of experiments.The results show that compared with the LSTM model and the SAES model,the GRU model is more accurate.The GRU model is more suitable for the prediction of the ship traffic flow data with weak data regularity.

相似文献/References:

[1]丁小虎,陈宁.港口集装箱自主识别定位技术[J].集美大学学报(自然版),2019,24(4):290.
 DING Xiaohu,CHEN Ning.Autonomous Recognition and Location Technology of Port Container[J].Journal of Jimei University,2019,24(6):290.

更新日期/Last Update: 2021-01-07