Vol. 24 No. 2 Mar. 2019

[文章编号] 1007 - 7405(2019)02 - 0081 - 13

DOI: 10. 19715/j. jmuzr. 2019. 02. 01

日本鳗鲡抗菌蛋白 BPI 基因的克隆、鉴定与表达

王佩1,段明珠1,黄贝1,熊静1,梁英1,黄文树1,2,3

(1. 集美大学水产学院,福建 厦门 361021; 2. 鳗鲡现代产业技术教育部工程研究中心,福建 厦门 361021; 3. 福建省海洋生物资源开发利用协同创新中心,福建 厦门 361005)

[摘要] 为探究鱼类抗菌肽—杀菌/通透性增强蛋白(bactericidal/permeability increasing protein,BPI)的 功能,从日本鳗鲡($Anguilla\ japonica$)中克隆和鉴定了两个 BPI 基因,命名为 AJBPI-1 和 AJBPI-2。这两个 抗菌肽均具有 BPI 超家族特征性的 LPS 结合结构域和脯氨酸富集区,其中 AJBPI-1 和 AJBPI-2 的N - 端碱性氨基酸(精氨酸和赖氨酸)的数量分别为 12 和 35,表明前者对 LPS 的结合力较后者弱。Real - time PCR 检测结果显示,AJBPI-1 在正常养殖鳗鲡的肝脏中转录表达量最高,其次是头肾,而 AJBPI-2 则在中肾和头肾中转录表达量最高,其次是血液。Poly I:C 和 $E.\ tarda$ 诱导后,鳗鲡脾脏中 AJBPI-1 和 AJBPI-2 的表达量均显著上调 (P<0.05),AJBPI-1 约为 PBS 对照组的 4.0 倍和 3.3 倍,AJBPI-2 为 PBS 对照组的 2.3 倍和 1.7 倍;经 LPS、Poly I:C 和 $E.\ tarda$ 刺激后,鳃中 AJBPI-2 表达量显著上调 (P<0.05),上调幅度最高可达到 PBS 组的 2.5 倍、17.0 倍和 7.0 倍;而中肾只在 LPS 和 Poly I:C 刺激时,AJBPI-1 和 AJBPI-2 的表达量显著上调 (P<0.05),AJBPI-1 约为 PBS 对照组的 3.0 倍和 2.2 倍,AJBPI-2 为 PBS 对照组的 2.0 倍和 2.2 倍。

[关键词] 日本鳗鲡; 抗菌肽; BPI 基因; 迟缓爱德华氏菌

[中图分类号] Q 344⁺.1

Molecular Cloning and Expression Analysis of Two Genes Encoding Bactericidal/Permeability-Increasing Protein in Japanese Eel, Anguilla japonica

WANG Pei¹, DUAN Mingzhu¹, HUANG Bei¹, XIONG Jing¹, LIANG Ying¹, HUANG Wenshu^{1,2,3}
(1. Fisheries College, Jimei University, Xiamen, 361021, China;

- 2. Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China;
 - 3. Fujian Collaborative Innovation Center for Development and Utilization of Marine Resources, Xiamen 361021, China)

Abstract: In order to clarify the biological function of bactericidal/permeability-increasing protein (BPI) counterpart in teleost, two *BPI* genes named *AJBPI* – 1 and *AJBPI* – 2 have been cloned and characterized from the Japanese eel (*Anguilla japonica*) in this study. Both of the predicted peptides shared LPS binding domain and Pro – rich domain, and contained N – basic amino acids (arginine and lysine) which the numbers were 12 and 35, respectively, indicating the weaker binding capability of *AJBPI* – 1 to LPS. Subsequently, their tissue specific expression was also tested by real-time PCR. Results showed that the highest expression of *AJBPI* – 1 was liver, followed by the head kidney. However, the highest expression of *AJBPI* – 2 was middle and head kid-

[「]收稿日期] 2018 - 05 - 08

[[]基金项目] 福建省自然科学基金项目 (2018J01452); 鳗鲡工程中心科研基金资助项目 (RE201809); 福建省教育厅项目 (JA170301)

[[]**作者简介**] 王佩 (1991—), 女,硕士生,主要研究方向为鱼类免疫学。通信作者:黄文树 (1973—),教授,博士。E-mail;wshuang@jmu.edu.cn

neys, followed by the blood. Moreover, their expressions changed in multiple tissues post different stimuli challenge were analyzed. When Poly I: C and *E. tarda* were used for stimulating individually, the expression levels of AJBPI-1 and AJBPI-2 in spleen were significantly up-regulated (P < 0.05), which were approximately 4.0/3.3 folds and 2.3/1.7 folds than those stimulated by PBS, respectively. Only when it was stimulated by LPS, Poly I: C and *E. tarda*, the expression levels of AJBPI-2 in gill were significantly up-regulated (P < 0.05), which were about 2.5 folds, 17.0 folds and 7.0 folds, respectively. While the expression levels of AJB-PI-1 and AJBPI-2 in middle kidney were significantly up-regulated after stimulation with LPS and Poly I: C (P < 0.05), which were about 3.0/2.2 and 2.0/2.2 folds than those stimulated by PBS, respectively. The results will provide some data for the classification and functional analysis of BPI/LBP genes in fish.

Keywords: Anguilla japonica; antimicrobial peptides; bactericidal/permeability increasing protein gene; Edwardsiella tarda

0 引言

抗菌肽(antimicrobial peptides)又称宿主防御肽,是生物体天然免疫系统的重要成分,广泛存在于无脊椎动物和脊椎动物中,是一类广谱抗微生物活性的多肽^[1-3]。杀菌/渗透性增强蛋白(Bactericidal/permeability increasing protein,BPI)是一类重要的抗菌肽,是 Weiss 等^[4]1975 年从兔子中性粒细胞中首次分离出来的,是一种可迅速杀死大肠杆菌(Escherichia coli)的多肽。1977 年,Weiss 等^[5]从人类的中性粒细胞中也分离得到了该抗菌肽,其 Isoelectric Point(pI)值为 9. 8,分子质量为 58~60 ku,当 pH 值达到 7.0 时,其杀菌和增强渗透性活性均最大,可杀死革兰氏阴性菌,如大肠杆菌和沙门氏菌(Salmonella spp.),因此,命名为杀菌/渗透性增强蛋白。哺乳动物 BPI 是一类胞外蛋白质^[6],其 N 端富含精氨酸和赖氨酸,以及两个位置保守的半胱氨酸。精氨酸和赖氨酸均为阳离子氨基酸,可与含有带负电荷的 LPS 结合,从而杀菌,或结合/中和内毒素^[7]。其 C 端和 N 端中间有脯氨酸富集中心连接,该区域可促进 BPI 分子与 LPS 结合,并介导 BPI - LPS 复合物向特定宿主细胞转运^[8-9]。BPI 被学者称为未来的"超级抗生素"^[10]。

除 BPI 外,哺乳动物的脂多糖结合蛋白(lipopolysaccharide binding protein,LBP)也可识别 LPS,二者均属于脂质转移和脂多糖结合蛋白家族成员^[11]。人类的 LBP 和 BPI 序列相似性高达 45%,其晶体结构相似^[12-13]。LBP 是一种胞浆蛋白质,与细菌脂多糖特别是类脂 A 高度亲和^[14]。在 LPS 刺激的炎症反应中 LBP 表达量增多,且可调节 LPS 颗粒使其与吞噬细胞表面的 CD14 结合^[14]。

在哺乳动物中 BPI 和 LBP 的基因序列和功能明显不同,但是,在硬骨鱼类中目前尚无法明确区分BPI 和 LBP^[15-16],因此,常以 BPI/LBP 表示。迄今为止,已在多种硬骨鱼中克隆和鉴定了 BPI/LBP 基因,如虹鳟(Onchorhynchus mykiss)^[17]、锦鲤(Cyprinus carpio)^[18]、大西洋鳕(Gadus morhua)^[19]、牙鲆(Paralichthys olivaceus)^[20]、香鱼(Plecoglossus altivelis altivelis)^[15]、大黄鱼(Pseudosciaena crocea)^[21]、条石 鲷(Oplegnathus fasciatus)^[22]、草鱼(Ctenopharyngodon idellus)^[16] 和 团 头鲂(Megalobrama amblycephala)^[23]等。与哺乳动物 BPI 基因主要在中性粒细胞和各种黏膜上皮细胞中表达不同,鱼类 BPI/LBP 基因的组织表达模式较多样。如鲤科鱼类:草鱼 BPI 在鳃中表达量最高,其次是头肾和中肾^[16];锦鲤 BPI 基因在肝脏和脾脏中表达量最高^[18]; 团头鲂 BPI/LBP 基因在肾脏中表达量最高^[22]。 又如石鲷科鱼类:条石鲷 BPI - 1 在脾脏和肝脏中表达量最高,BPI - 2 在肾脏中表达量最高^[22]。此外,外源刺激物刺激后,鱼类 BPI 转录表达变化规律也不同。如受 LPS 刺激 3 h 后,锦鲤肝脏和头肾中的 BPI 均微弱上调^[18],而受 LPS 刺激 2 h 后,团头鲂脾脏中 BPI/LBP 上调达到最高值^[23]。

日本鳗鲡 (Anguilla japonica) 是我国重要的养殖鱼类^[24]。然而,细菌性疾病一直困扰着鳗鲡养殖业发展。迄今为止,关于鳗鲡的抗细菌免疫应答的研究较为缺乏。BPI 是重要的抗细菌免疫因子,是鱼类天然免疫系统的重要组成部分,目前未见鳗鲡属 BPI 的相关研究。基于此,本研究运用

SMARTerTM RACE 技术,从日本鳗鲡中克隆、鉴定 BPI 基因序列,并进一步利用 Real – time PCR 技术,研究在正常养殖和人工免疫物刺激下,BPI 基因在日本鳗鲡体内表达量变化的规律,以期为阐析 鳗鲡 BPI/LBP 基因的分类、命名及其结构功能等提供参考。

1 材料与方法

1.1 实验材料及处理

日本鳗鲡((203±53)g),购于福建省集美大学水产养殖基地。于水温(28±2)℃暂养1周后,采集日本鳗鲡血液、鳃、心脏、肝脏、胃、肠、脾脏、头肾、中肾、鳔、性腺和皮肤等组织/器官用于试验。

免疫刺激试验: 腹腔注射,设 PBS 对照组、LPS 刺激组 (0.01 mg/g, Sigma)、Poly I: C 刺激组 (0.01 mg/g, Sigma)、迟缓爱德华氏菌刺激组 (2×10⁵ cfu/g),在注射后 8 h、16 h、24 h 和 72 h 采样。每组每个时间点随机取鳗鲡 8 尾。

1.2 BPI 基因 cDNA 序列的克隆

将约 100 mg 日本鳗鲡肝脏组织用 Trizol® Rreagent 试剂盒提取其总 RNA, 具体操作参考相关研究^[25]。用琼脂糖凝胶电泳法和分光光度法(NanoDrop2000, 美国 Thermo)检测所提取总 RNA 的完整性和纯度,即 RNA 的 28 S 和 18 S 条带清晰且 D₂₆₀/D₂₈₀为 1. 8 ~ 2. 0 时,方可用于下一步实验。随后,总 RNA 经 RNase – free DNase I(New England Biolabs Inc, 美国)处理,反转录(SMARTer™RACE cDNA Amplification Kit, Clontech, 美国)获得第一链模板。

通过分析已制备的日本鳗鲡肝脏和肾脏 cDNA 文库,获得 BPI 基因的 EST 序列,设计引物(见表1),进行巢式 PCR 扩增,获得 BPI 基因的 5'和 3'末端 cDNA 序列,进一步设计引物,再经 PCR 扩增,验证其全长 cDNA 序列。

1.3 BPI 基因组序列的扩增

取日本鳗鲡的肌肉,参照 MiniBEST Universal Genomic DNA Extraction Kit Ver. 4.0 试剂盒(TaKa-Ra,日本)说明书,提取日本鳗鲡基因组 DNA。根据已经获得的基因全长 cDNA 序列设计特异性引物(见表 1),扩增 *BPI* 的基因组 DNA。

1.4 Real – time PCR

取 4 μg 健康日本鳗鲡组织的总 RNA, 经 DNA 酶处理及反转录(GoScripTMReverse Transcription System, Promega, 美国)用以制备 Real – time PCR 模板,用 RNAase free water 稀释—定倍数后保存、备用。

以 β – actin 为内参基因,在 LightCycler 480 II 实时定量 PCR 仪上进行实时检测与分析。qPCR 反应体系如下: $2 \times LightCycler$ 480 SYBR Green I Master Mix 10.0 μ L,稀释后的 cDNA 模板 4.0 μ L,正、反向引物(10 μ mol·L⁻¹)各 0.5 μ L,PCR – Grade water 5.0 μ L。反应条件:95 $^{\circ}$ C 变性 20 s,58 $^{\circ}$ L 退火 20 s,72 $^{\circ}$ C 延伸 25 s,40 个循环。荧光信号采集温度为 81 $^{\circ}$ C。反应结束后分析产物的溶解曲线,判断其特异性。以 β – actin 作为内参基因,梯度稀释已知拷贝数的 AJBPI 和 β – actin 质粒样品及组织/器官样品分别进行 PCR 扩增,绘制标准曲线进而计算各基因的扩增效率。

1.5 生物信息学分析

利用 NCBI 网站中的 Blast 进行序列比对(http://blast. ncbi. nlm. nih. gov/Blast. cgi); 通过 ExPASy 的翻译工具获得 BPI 的氨基酸序列(http://web. expasy. org/translate/), 再用 ExPASy 预测 BPI 氨基酸的分子量和 pI 值(http://web. expasy. org/compute_pi/); 用 SignalP 4.1 Server 程序分析信号肽(http://www.cbs. dtu. dk/services/SignalP/); 用 Pfam 程序分析 BPI 的结构域(http://pfam. xfam. org/); 利用 DNAman 软件进行氨基酸序列的多重比对;应用 MEAG5.0 软件,采用邻位相接法(NJ法)构建系统发育树。

1.6 数据统计分析

用 Excel 和 Spss18.0 软件进行数据计算,用单因素变量方差分析法(ANOVA)分析 LPS、Poly I:C 和 E. tarda 刺激后样品间的表达量差异,利用 Dunnettt - Test (2 - sided)进行多重比对。所有数据

均用平均值 \pm 标准误差 (SEM) 的方式表示, P < 0.05 表示差异显著, P < 0.01 表示差异极显著。利用 GraphPad. Prism. v5. 0 软件进行作图。

表1 引物序列

Tab. 1 List of primer sequences

		 退火温度					
引物名称	序列(5′-3′)	返火温度 Annealing	用途				
Names of primer	Primer Sequences	temperature/°C	Applicant				
AJBPI – 1F1	AAGCTGAAGCACGGCCTTCCTATCC	60	第一轮 5'RACE 5'RACE 1st round PCR				
AJBPI – 1R1	CGTCTTTAATGGCAGGGATAGGAAGGC	60	第一轮 3'RACE 3'RACE 1st round PCR				
AJBPI - 1F2	ACAACGATGGCATTGCCTTGGCTCAA	58	第二轮 5'RACE 5'RACE 2 nd round PCR				
AJBPI – 1R2	CAGAGCTGTCCTTCCTCCAGTGATGAGA	36	第二轮 3'RACE 3'RACE 2 nd round PCR				
AJBPI - 2F1	AGGACTGAGCATCACCTCTCGCATCAC	60	第一轮 5'RACE 5'RACE 1st round PCR				
AJBPI – 2R1	TTTCCGCTCCCGCATTGGCAAGG	00	第一轮 3'RACE 3'RACE 1st round PCR				
AJBPI - 2F2	TGCTGAGTTGACGGTGAAGGAGGACA	58	第二轮 5'RACE 5'RACE 2 nd round PCR				
AJBPI - 2R2	CCCGCCGTGGAACTTGACTTTGAC	36	第二轮 3'RACE 3'RACE 2 nd round PCR				
UPM	CTAATACGACTCACTATAGGGCAAGCAG -	60	第一轮 RACE RACE 1st round PCR				
	TGGTATCAACGCAGAGT						
NUPM	AAGCAGTGGTATCAACGCAGAGT	60	第二轮 RACE RACE 2nd round PCR				
AJBPI – 1F	ATGAGTGGGGATGTCAGTCTC	56	序列验证 Sequence confirmation				
AJBPI – 1R	TCAGAGCTGTCCTTCCTCCAG	30	序列验证 Sequence confirmation				
AJBPI - 2F	ATGTTGACCGCGTGGTGTT	54	序列验证 Sequence confirmation				
AJBPI – 2R	GGTGACATCCCTTGATGCTCA	34	序列验证 Sequence confirmation				
qAJBPI - 1F	CCGATAAAATG ATTCCCCCAC	58	荧光定量 PCR Real - time PCR				
qAJBPI - 1R	CAGAGGCAGGGT CGAAAAAG	36	荧光定量 PCR Real - time PCR				
qAJBPI - 2F	CACTGAATG TGCTTGCCC	58	荧光定量 PCR Real - time PCR				
qAJBPI - 2R	CTTGCCAAT CTCGGGGATG	36	荧光定量 PCR Real - time PCR				
AJ – actinF	TCACCACCACAGCCGAAAGG	62	荧光定量 PCR Real - time PCR				
AJ – actinR	CGCAGGATTCCATTC CCAGGA	02	荧光定量 PCR Real - time PCR				
M13F	CGCCAGGGTTTTCCCAGTCACGAC	62	测序 Sequencing				
M13R	AGCGGATAACAATTTCACACAGGA	02	测序 Sequencing				

说明: 直下划线部分位于前一个外显子, 加粗波浪线的部分位于后一个外显子

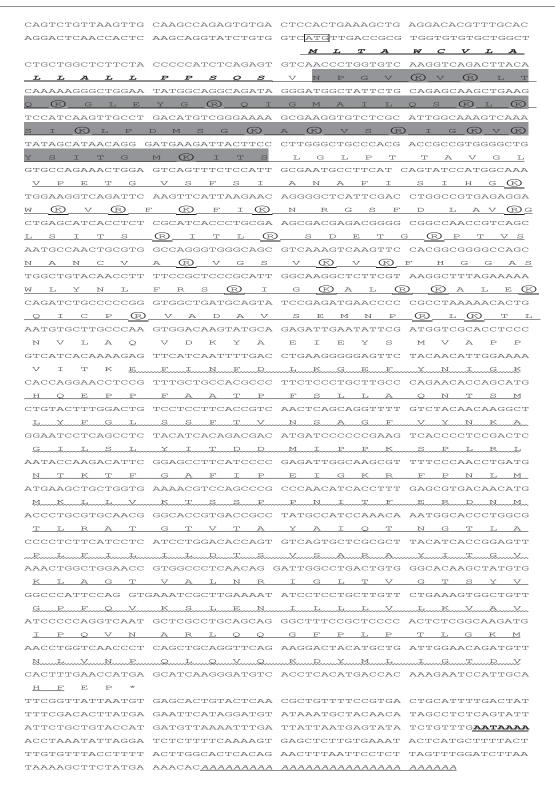
Notes: Nucleotides sequence underlined is located in the former exon, that with wavy line is located in the latter exon

2 结果

2.1 日本鳗鲡 AJBPI 基因序列分析

从日本鳗鲡的肝脏和肾脏 cDNA 文库中筛选到两条 *BPI* 的 EST 序列,通过 RACE、PCR 克隆和序列 拼接,获得日本鳗鲡两条 *BPI* 的 cDNA 序列,分别命名为 *AJBPI* – 1 和 *AJBPI* – 2。*AJBPI* – 1 cDNA 全长 1617 bp,包括 5′UTR 207 bp,开放阅读框(ORF)1278 bp(编码 425 个氨基酸残基),3′UTR 132 bp(见图 1),预测其前体肽分子质量为 46. 26 ku,pI 值为 8. 58。*AJBPI* – 2 cDNA 全长 1911 bp,包括 5′UTR 93 bp,开放阅读框(ORF)1422 bp(编码 473 个氨基酸残基),3′UTR 396 bp(见图 2),预测其前体肽分子质量为 51. 74 ku,pI 值为 10. 11。通过 Phyre2 对抗菌肽 AJBPI – 1 和 AJBPI – 2 二级结构预测,结果表明二者主要由 β – 折叠构成,其含量分别高达 53% 和 48%,该结构有利于 AJBPI 抗菌肽构象的稳定;其次为 α – 螺旋,其含量分别为 21% 和 26%。通过 SWISS – MODEL 预测,发现抗菌肽 AJBPI – 1 和 AJBPI – 2的三级结构相似,即它们均有"桶状结构单元",该桶状结构单元由 N – 和 C – 末端氨基酸残基中心的 β – 折叠连接(见图 3)。

通过对两种 AJBPI 的 N 端氨基酸残基分析可知,AJBPI -1 含精氨酸和赖氨酸数量分别为 4 和 8,少于 AJBPI -2 (12 和 35) (见图 1、2 和表 2)。


ACCCAGCAAGACAAC TCTAAGACGGTGTTG CTGCCGGCAGCCTGT TAAGATGTGCCGGTC CCTGCTGCTCCTCCT CTCCCTGGCCGTTTG CGCCATGGCAGGCAA TGTCCTCACGGACAA GGGACTTAAGTTCGG CACGAAGGTGGGACA GAGTGGCTCCAGGCC CAGATTCTGCAAGCT CAAATCCCAGACATG AGTGGGGATGTCAGT CTCAGCATACTGGGC M S CTGAGCAGGATGGGC GTGGCTAGGTTGAAC ATGCCCCTCCCCTCC TCCGTGCATTACACT \mathbb{R} М R G GTGGTGTTCTCTGAG GGGACGGGGTGCAG GTGGACCTGACCGGC TTCAACATGGCAGTG G D L T AAGGGGCAGTGGAAC ACACGCTACTTATTT ATACGGGACGGAGGC ACCTTTCGGCTGGGT ® R ATGTTCAACGTGGGC GTGTCCCTGCAGCTC CAGGTGGGCAGCGAT GAGAATGGCCACCTG TCTGTCTCTAGCGTC CAGTGCAAGTCCAGC ATCGGCGCAATGGAT ATCCTCTTCCATGGA G Α M D I Н L GGAGCCAGCTGGGTC CTCCAACAATTTGTG ACGCAGTTCAAACGT CAAATACAGTCCCAG (K) Q GTTCAGGAGAAGGTC TGTCCGACGTTTGAG CGTGGAATCCAGCGC CTGGAGAGCCATCTA R $^{\mathbb{R}}$ G I Q CGCGTGCTGCTGTTA TCCATCCCGCTGTAC Ι P L Y R V L L L D M CAGGCTTCTGACCTC TCTCCTGCTATA AGTCTGGATTTCAAG I P A Q S D L S D \mathbf{F} K G GAACCGCCGTTTGTG TCCGAGAAGTTCCAG GCCCAGTGTCCCAAG CTGCCCCCGCAGGAG K CTGGGCGTGTCCAAG TTCTGCCTCAACTCC K F N ATGTCCACCGGCCTG CTCCAGATTAACATC ACCGATAAAATGATT CCCCCACATTTCCCC G L. Q N I T D K M P Ţ ATCCACCTCAACACC TCCAGCTTCGGACAA TTTGTCCCACAGCTT CCCAAGCTGTTCCCC NTSSFGQFVPQLP AACATGCTGATGCTG TTTCACGTGTACACG TCCAGCACGCCCCTG GTCTCCCTCCTGCCC T M L F H V Y S S T P ...L GATAATGCCACCTG CTCCTGTCTGCCTCG GCCAAGGCCTACGCC ATCAAGCCCAACTCC S A CTCTTCAGACTCGAC CTGAGCGCCAACATT TCCGCCCTCATCCCC GGCGGTAAATTCTTT R D N CTGAAGGGATCACCG ATGCTGAACAACTTC P M N N GCCTCTGAAGTGGGA ACTTTTTCGACCCTG CCTCTGCAGAACGTG CTGAATGTGGGGATA G F S L. Ρ. L. <u>Q</u>. N N ACAACGATGGCATTG CCTTGGCTCAATGCA AAGCTGAAGCACGGC CTTCCTATCCCTGCC T T M A L P W L N A K L K H G L P I P A ATTAAAGACGTCAAT TTGAGCAATACTGTC CTGAAAGTGATCAAG GGGTTTGTGGCCGTT T K N L S N V L K I G GCTACGGACGCCGCA GTCTCATCACTGGAG GAAGGACAGCTCTGA AGAGGGACCAGTCTT CAGCAAGTTCCCAGA AAATGCTTCTCTTTT TTTTTTA**AATATA**AA TAACTGCACTCAGCC

说明:在核苷酸序列中,多腺苷化信号用粗体下划线表示,Poly(A)尾用斜体下划线表示。在氨基酸序列中,LPS 结合域用 阴影表示,N-端和 C-端结构域分别以直下划线和波浪下划线表示,N-端精氨酸和酪氨酸以圆圈表示

Notes: In nucleotide sequence,poly-adenylation signal (AATAAA) is bold with a straight underline, and poly (A) tail is underlined and italic. In the amino acid sequence, LPS binding domain is shadowed, and domains in N-terminal and C-terminal are a underlined with straight and wavy, respectively. The arginine and tyrosine at the N-terminal are circled

图 1 AJBPI-1 基因 cDNA 全长

Fig.1 The full-length cDNA and the deduce amino acid sequences of *AJBPI*-1 gene in *Anguilla japonica* http://xuebaobangong.jmu.edu.cn/zkb

说明:在核苷酸序列中,多腺苷化信号用粗体下划线表示,Poly(A)尾用斜体下划线表示。在氨基酸序列中,LPS 结合域用阴影表示,N-端和 C-端结构域分别以直下划线和波浪下划线表示,N-端精氨酸和酪氨酸以圆圈表示

Notes:In nucleotide sequence,poly-adenylation signal (AATAAA) is bold with a straight underline, and poly (A) tail is underlined and italic.In the amino acid sequence,LPS binding domain is shadowed, and domains in N-terminal and C-terminal are a underlined with straight and wavy, respectively. The arginine and tyrosine at the N-terminal are circled

图 2 AJBPI-2 基因 cDNA 全长

Fig.2 The full-length cDNA and the deduce amino acid sequences of AJBPI-2 gene in Anguilla japonica

a) AJBPI-1

b) AJBPI-2

图 3 用 SWISS-MODEL 预测两种 AJBPI 氨基酸的三级结构

Fig.3 The three–dimensional structure of AJBPI from Anguilla japonica predicted by the method of SWISS–MODEL

表 2 鱼类 *BPI* 的序列信息 Tab. 2 Sequence information of *BPI* from teleost

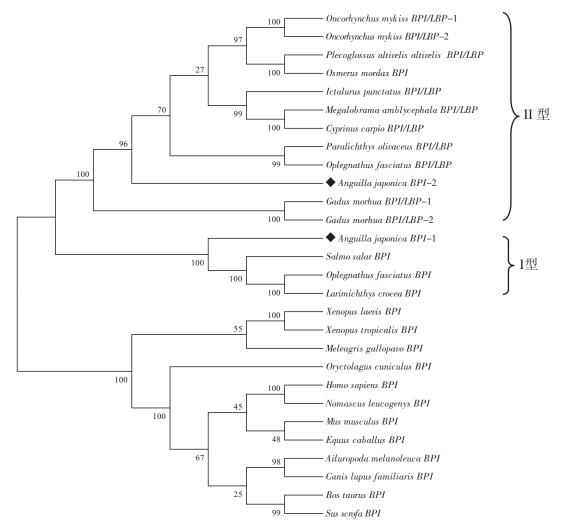
物种 Species	登录号 Aaccession no.	基因 Gene	类型 Type	N 端赖氨 酸个数 The number of lysines at N – terminal	N 端精氨酸个数 The number of arginines at N – terminal	pI 值 Isoelectric point	与 AJBPI - 1 的 相似性或 一致性/% Similarity with AJBPI - 1	与 AJBPI - 2 的 相似性或 一致性/% Similari with AJBPI - 2
日本鳗鲡 Anguilla japonica	_	<i>BPI</i> – 1	I	4	8	8.58	100/100	44.70/32.70
大西洋鲑 Salmo salar	ACI33182. 1	BPI	I	7	4	5.48	56.47/44.47	50.10/36.78
条石鲷 Oplegnathus fasciatus	BAM21037.1	BPI	I	10	4	4.65	56.00/44.47	49.47/35.94
大黄鱼 Larimichthys crocea	ABO32254.1	BPI	I	11	4	5.13	51.29/40.00	46.82/34.11
日本鳗鲡 Anguilla japonica	_	<i>BPI</i> – 2	II	20	15	10.11	44.70/32.70	100/100
团头鲂 Megalobrama amblycephala	AIT76553.1	BPI/LBP	II	16	4	8.85	48.47/33.88	73.78/64.40
斑点叉尾鮰 Ictaluru spunctatus	AAX20011.1	BPI/LBP	II	17	7	8.19	48.7/35.52	73.99/63.84
锦鲤 Cyprinus carpio	BAC56095.1	BPI/LBP	II	19	5	8.82	50.35/34.35	74.84/65.11
牙鲆 Paralichthys olivaceus	ACV74252.1	BPI/LBP	II	17	6	9.59	50.35/36.00	73.78/64.27
虹鳟 Oncorhynchus mykiss	BAB91244. 1	BPI/LBP-2	II	19	6	9.34	50.11/36.23	76.53/67.65
虹鳟 Oncorhynchus mykiss	BAB91243.1	BPI/LBP-1	II	14	9	9.07	48.70/35.05	77.58/68.71
香鱼 Plecoglossus altivelis altivelis	BAH11125.1	BPI/LBP	II	19	15	9.67	52.00/36.23	77.91/69.21
胡瓜鱼 Osmerus mordax	ACO09816.1	BPI	II	12	7	9.61	51.29/35.52	79.14/70.00
条石鲷 Oplegnathus fasciatus	BAM21038.1	BPI/LBP	II	23	15	10.18	49.88/35.29	76.95/66.80
大西洋鳕 Gadus morhua	AAM52335.1	BPI/LBP – 1	II	18	12	10.02	49.41/34.11	68.28/57.50
大西洋鳕 Gadus morhua	AAM52336. 1	BPI/LBP – 2	II	18	12	10.05	49.17/33.88	68.07/57.29

从两栖类、硬骨鱼类及哺乳动物中选取代表种的 BPI 序列(GenBank 登录号见表 3),进行多重比对,结果显示: 所有物种 BPI 都具有保守的 LPS 结合结构域和一对位置固定的二硫键,以及脯氨酸富集中心结构域。序列相似性比对结果显示,AJBPI - 1 序列与大西洋鲑相似性最高(56.47%),其次为条石鲷(56.0%);AJBPI - 2 序列与胡瓜鱼相似性最高(79.14%),其次为香鱼(77.91%)(见表 2)。利用 MEAG4.0 软件构建 NJ 系统进化树(Jones Taylor Thornton model,JTT 模型),系统进化树的拓扑结构显示: 哺乳动物聚为一大支,硬骨鱼类聚为另一大支。其中硬骨鱼类又分为两小支: AJBPI - 1 与大西洋鲑、条石鲷和大黄鱼的阴离子 BPI 基因聚为一支;AJBPI - 2 与虹鳟等阳离子 BPI 基因聚为一支(见图 4)。

表 3 其他物种的登录号

Tab. 3 Aaccession number of other species

物种 Species	登录号 Aaccession NO.	物种 Species	登录号 Aaccession NO.		
人 Homo sapiens	AAG42844. 1	牛 Bos taurus	CAA36797.1		
白颊长臂猿 Nomascus leucogenys	XP_003253614.2	家兔 Oryctolagus cuniculus	NP_001182733.1		
小鼠 Mus musculus	NP_808518.1	野猪 Sus scrofa	ABO34136. 1		
火鸡 Meleagris gallopavo	XP_003212156.1	☐ Equus caballus	XP_001502529.1		
大熊猫 Ailuropoda melanoleuca	XP_002915210.1	非洲爪蟾 Xenopus laevis	NP_001086208.1		
犬 Canis lupus familiaris	XP_534417.2	热带爪蟾 Xenopus tropicalis	NP_001107736.1		



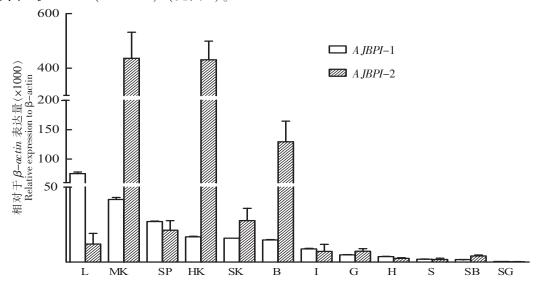

图 4 日本鳗鲡 AJBPI 与其他物种的 BPI 基因系统发育分析

Fig.4 Phylogenetic analysis of BPI amino acid sequences from Anguilla japonica and other species

2.2 *AJBPI* - 1 和 *AJBPI* - 2 基因在不同组织中的分布

利用 Real – time 方法分析 AJBPI – 1 和 AJBPI – 2 在正常鳗鲡不同组织中的表达规律。结果显示:二者在日本鳗鲡肝脏、肠、皮肤、心脏、血液、胃、头肾、中肾、脾脏、鳃等组织/器官表达中均有转录表达,尤其是在肝脏、中肾、脾脏、头肾、皮肤、血液中表达量较高。AJBPI – 1 在肝脏中转录表达量最高,是 β – actin 的 0.075 倍;而 AJBPI – 2,在头肾和中肾中表达量较高,是 β – actin 的

0. 44 倍。中肾、头肾和血液中的 AJBPI-2 极显著高于 AJBPI-1 (P<0.001),而肝脏中的 AJBPI-1 却极显著高于 AJBPI-2 (P<0.01)(见图 5)。

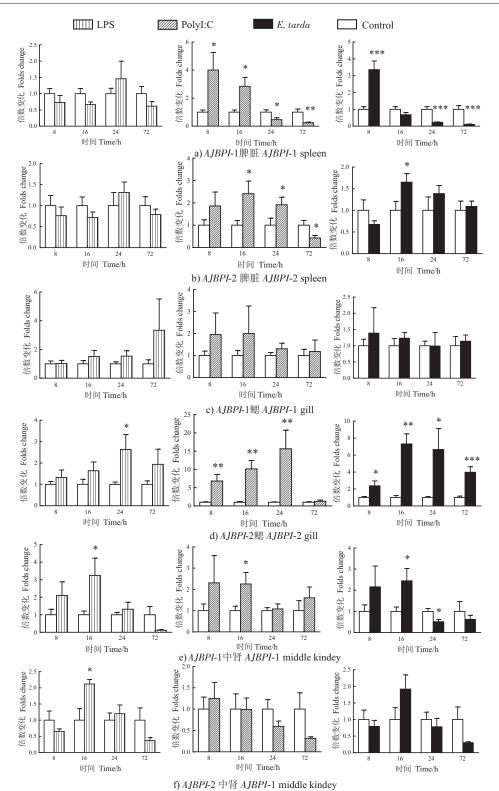
指标 Item	L	MK	SP	HK	SK	В	I	G	Н	S	SB	SG
AJBPI-1	75.28	41.75	27.06	16.88	15.97	14.79	8.81	4.90	3.72	1.94	1.71	0.46
AJBPI-2	12.04	435.65	21.28	430.51	27.74	129.38	7.13	7.28	2.47	1.79	4.14	0.26
AJBPI-1/AJBPI-2	6.25	0.10	1.27	0.04	0.58	0.11	1.24	0.67	1.50	1.08	0.41	1.80
	**	***		***		**						

说明:数据以平均值±标准误表示(N=6)。L—肝脏;MK—中肾;SP—脾脏;HK—头肾;SK—皮肤;B—血液;I—肠;G—鳃;H—心脏;S—胃;SB—鳔;SG—性腺。A JBPI=1 和 A JBPI=2 表达量的比值也列在表中,同一组织内两个基因的表达量经 t=检验后,*P<0.05,P<0.01,***P<0.001

Notes; Data are shown as mean ± SEM(N = 6).L-Liver, MK-Middle Kidney, SP-Spleen, HK-Head Kidney, SK-Skin, B-Blood, I-intestine, G-Gill, H- Heart, S-Stomach, SB-Swim Bladder, SG-Sexual Gland. Expression ratios of *A JBPI*-1/*A JBPI*-2 are also shown in the table. *P<0.05, **P<0.01 and ***P<0.001, by t-test

图 5 AJBPI-1 和 AJBPI-2 基因在日本鳗鲡不同组织/器官中相对表达量

Fig.5 Expression level of AJBPI-1 and AJBPI-2 in multiple tissues/organs from Japanese eel


2.3 免疫刺激后 *AJBPI* - 1 和 *AJBPI* - 2 的基因表达变化

为了研究不同刺激物刺激后对 AJBPI-1 和 AJBPI-2 基因表达情况的影响,本实验用 LPS、Poly I:C 和 E. tarda 分别刺激日本鳗鲡。结果显示:

脾脏中,经 Poly I:C 和 *E. tarda* 刺激后, *AJBPI* – 1 的表达量均迅速达到最高值,分别为 PBS 对 照的 4.0 倍和 3.3 倍,刺激后 16 h, *AJBPI* – 2 的表达量均显著上调 (P < 0.05),分别为 PBS 对照组的 2.3 倍和 1.7 倍。经 LPS 刺激后, *AJBPI* – 1和 *AJBPI* – 2 的表达水平无显著变化 (P > 0.05)(见图 6)。

鳃中,经 LPS、Poly I: C 和 *E. tarda* 刺激后, *AJBPI* – 2 的表达量均有上调。其中, LPS 和 Poly I: C 刺激后 24 h, *AJBPI* – 2 表达量最高,分别为 PBS 对照组的 2.5 倍和 17.0 倍; *E. tarda* 刺激后 18 h, *AJBPI* – 2 表达量最高,为 PBS 对照组的 7.0 倍。而该三种刺激物刺激后,*AJBPI* – 1 的表达量均无显著变化 (P > 0.05) (见图 6)。

中肾中,经 LPS 和 Poly I: C 刺激后 16 h, AJBPI-1 和 AJBPI-2 的表达量均显著上调 (P<0.05)。其中, LPS 刺激后, AJBPI-1 和 AJBPI-2 分别为 PBS 对照组的 3. 0 倍和 2. 0 倍; 而 Poly I: C 刺激后, AJBPI-1 和 AJBPI-2 均为 PBS 对照组的 2. 2 倍。然而,E. tarda 刺激后,中肾中 AJBPI-2 的表达量无显著变化 (P>0.05)(见图 6)。

说明:以 β -actin 为内参基因;误差线表示平均数±SEM(N=6);t-检验,*P<0.05,**P<0.01,***P<0.001

Notes; Amplification of β -actin in each tissue is performed as an internal control. Vertical bars represented the mean \pm SEM(N=6). *P<0.05,**P<0.01 and ***P<0.001 ,t-test

图 6 日本鳗鲡 AJBPI-1 和 AJBPI-2 受 LPS、Poly I:C 和 E. tarda 刺激后的表达量

Fig.6 The relative expression of AJBPI–1 and AJBPI–2 in Anguilla japonica after intraperitoneal injection with LPS, Poly I:C and E. tarda

3 讨论

BPI 是一类含有 LPS 结合结构域和脯氨酸富集区的阳离子抗菌肽。它通过 LPS 结合结构域与革兰 氏阴性菌的脂多糖发生结合^[26],从而发挥抗菌作用。

首先,研究表明 BPI N 端碱性氨基酸可聚集成簇,通过静电作用与 LPS 的脂质 A 区域的酸性位点结合,进而中和内毒素,增强抗菌活性^[27]。已有报道,条石鲷 BPI - 1 的 N 端含有 4 个精氨酸和 10 个赖氨酸; BPI - 2 的 N 端含有 15 个精氨酸和 23 个赖氨酸^[22]。斑点叉尾鮰 BPL/LBP N 端含有 6 个精氨酸和 19 个赖氨酸^[28]。本研究中 AJBPI - 1 的 N 端也含有少数的阳离子氨基酸,即 8 个精氨酸和 4 个赖氨酸,而 AJBPI - 2 的 N 端含有 15 个精氨酸和 20 个赖氨酸。该结果与已报道的条石鲷^[22]的 BPI相似。现有数据分析可知,I 型 BPI 含有的阳离子数目少于 II 型 BPI。因此,推测 AJBPI - 2 与 LPS 的亲和力更强。其次,同源性分析可知,AJBPI - 1 与硬骨鱼类 BPI/LBP 相关基因相似性为 51. 29% ~56. 47%,其中与大西洋鲑 BPI 基因相似性高达 56. 47%,AJBPI - 2 与硬骨鱼类 BPI/LBP 相关基因相似性为 68. 07% ~ 79. 14%,其中与胡瓜鱼相似性高达 79. 14%。最后,AJBPI - 1 与硬骨鱼类 BPI 基因聚为一支,而 AJBPI - 2 与硬骨鱼类 BPI/LBP 基因聚为另一大支。根据以上结果可知,AJBPI - 1 和 AJBPI - 2 基因的特征序列、相似性等分别接近其他鱼类的 BPI 和 BPI/LBP 基因,即鱼类 I 型 BPI 和 II 型 BPI。

鱼类 I 型 BPI 主要在中性粒细胞和上皮细胞中表达。如条石鲷 BPI - 1 基因在肝脏、脾脏中高表达^[22],大黄鱼 BPI 基因在肝脏、头肾、心脏中高表达^[21]。本研究的 AJBPI - 1 在所检测的各个组织中均有表达,且在肝脏、头肾和脾脏中高表达。这表明日本鳗鲡 BPI - 1 基因的组织分布与上述鱼类BPI 基因的组织分布相似。异源性抗原物质如 LPS、病毒和细菌刺激可显著诱导鱼类 BPI 基因的表达。如 E. tarda 和真鲷虹彩病毒(red sea bream iridovirus,RSIV)诱导后,条石鲷 BPI - 1 基因在头肾中表达量显著上调^[22]。受溶藻弧菌(Vibrio alginolyticus)和诺卡氏菌(Nocardia seriolae)刺激后,大黄鱼头肾、脾脏、肠道、肾脏、鳃和肌肉中 BPI 基因的表达量显著上调^[21]。本研究发现,用 LPS、Poly I:C 和 E. tarda 分别刺激日本鳗鲡中肾、脾脏和鳃时,中肾中 AJBPI - 1 的表达量均有显著上调;在 Poly I:C 和 E. tarda 刺激下脾脏中 AJBPI - 1 的表达量具有显著性变化,而鳃中 AJBPI - 1 的表达量均无显著变化。根据以上结果可知,BPI - 1 主要在脾脏、肾脏等造血器官中高表达。

II 型 BPI 基因与 I 型 BPI 基因表达模式不尽相同。虹鳟的 BPI/LBP 基因在肝脏和头肾中均有表达^[17]。香鱼的 BPI 基因主要在肾脏、皮肤、鳃、肠道和脾脏中高表达^[15]。条石鲷的 BPI - 2 基因主要在肾脏、外周血及脾脏中高表达^[22]。锦鲤的 BPI 基因主要在头肾、肝脏、脾脏、肠道和鳃中表达^[18]。大西洋鳕的 BPI 基因主要在外周血和头肾中高表达^[19]。斑点叉尾鲖的 BPI 基因在头肾、中肾、皮肤、肠道中高表达^[28-29]。团头鲂的 BPI/LBP 基因主要在头肾、中肾、肌肉、脾脏、心脏中高表达^[23]。本研究的 AJBPI - 2 在头肾、中肾、血液和皮肤中高表达。本文结果表明,在健康鱼类组织中,日本鳗鲡 BPI - 2 基因的组织分布和上述鱼类 II 型 BPI 的组织分布相似。

异源性抗原物质刺激时,灭活的鳗弧菌能诱导大西洋鳕的 BPI/LBP 基因在头肾、脾脏、外周血等多个组织中表达量上调^[19]。E. tarda 和海豚链球菌(Streptococcus iniae)刺激后,条石鲷 BPI/LBP 基因在头肾中表达量显著上调^[22];而 E. tarda 和真鲷虹彩病毒诱导后,牙鲆的 BPI/LBP 基因在头肾、脾脏、肝脏、鳃和肠道中表达量显著上调^[20]。LPS 刺激 2 h,团头鲂的 BPI 基因在脾脏中表达量显著上调^[23]。而且,LPS 体外刺激时虹鳟^[17]和锦鲤^[18]的 LBP/BPI 基因在 24 h 内立即发生响应,而斑点叉尾鲖^[28]LBP/BPI mRNA 在细菌体外刺激 24 h 后才发生响应。此外,细菌刺激后,牙鲆^[20]肝脏中LBP/BPI mRNA 表达量增加,而 LPS 刺激后虹鳟^[17]肝脏中 LBP/BPI 无任何变化。本研究发现,用LPS、Poly I:C 和 E. tarda 分别刺激日本鳗鲡中肾、脾脏和鳃时,鳃中 AJBPI - 2 的表达量均有显著上调;在 Poly I:C 刺激下中肾中 AJBPI - 2 的表达量均有显著上调;在 Poly I:C 和 E. tarda 刺

激下脾脏中 AJBPI-2 的表达量也具有显著性变化。本文结果与 E. tarda 刺激后牙鲆^[20]的 BPI/LBP 基因表达模式相似,且其与虹鳟^[17]和锦鲤^[18]也相似,即均在刺激物刺激 24 h 内发生响应。综上所述,BPI-2 在造血器官和其他组织器官如鳃和肠道等组织/器官中表达。此外,I 型和 II 型 BPI 基因在不同物种中的表达模式均有差异,这些差异可能与诱导物的种类、LPS 浓度及鱼龄等^[22]相关。

综上所述,本研究从日本鳗鲡中克隆、鉴定了两类 AJBPI 基因。AJBPI 在所检测的组织中均有不同程度的表达,用 LPS、Poly I: C 和 E. tarda 分别刺激时日本鳗鲡中的肾、鳃和脾脏中的 AJBPI 均有不同响应。该研究结果显示 AJBPI 可能参与日本鳗鲡的抗细菌和抗病毒免疫,而且它将为鱼类的BPI/LBP 基因的命名、分类及其功能分析等提供一定的理论依据。

「参考文献]

- [1] REDDY K V, YEDERY R D, ARANHA C. Antimicrobial peptides: premises and promises [J]. International Journal of Antimicrobial Agents, 2004, 24(6): 536-547.
- [2] WANG G, LI X, WANG Z. APD3: the antimicrobial peptide database as a tool for research and education [J]. Nucleic Acids Research, 2016, 44 (Database issue): D1087-D1093.
- [3] NIBBERING P H, HIEMSTRA P, DRIJFHOUT J W. Antimicrobial peptide: US, US9562085 [P]. 2017.
- [4] WEISS J, FRANSON R C, BECKERDITE S, et al. Partial characterization and purification of a rabbit granulocyte factor that increases permeability of *Escherichia coli* [J]. The Journal of Clinical Investigation, 1975, 55(1): 33-42.
- [5] WEISS J, ELSBACH P, OLSSON I, et al. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes [J]. Journal of Biological Chemistry, 1978, 253(8): 2664-2672.
- [6] SUN Y Y, LI S. A teleost bactericidal permeability-increasing protein kills gram-negative bacteria, modulates innate immune response, and enhances resistance against bacterial and viral infection [J]. Plos One, 2016, 11(4): e0154045.
- [7] OOI C E, WEISS J, ELSBACH P, et al. A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/permeability-increasing protein [J]. Journal of Biological Chemistry, 1987, 262(31): 14891-14894.
- [8] MANNION B A, WEISS J, ELSBACH P. Separation of sublethal and lethal effects of the bactericidal/permeability increasing protein on *Escherichia coli* [J]. Journal of Clinical Investigation, 1990, 85(3): 853-860.
- [9] BEAMER L J, CARROLL S F, EISENBERG D. The BPL/LBP family of proteins: a structural analysis of conserved regions [J]. Protein Science, 1998, 7(4): 906-914.
- [10] BALAKRISHNAN A, MARATHE S A, JOGLEKAR M, et al. Bactericidal/permeability increasing protein: a multifaceted protein with functions beyond LPS neutralization [J]. Innate Immunity, 2013, 19(4): 339-347.
- [11] BINGLE C D, CRAVEN C J. Meet the relatives; a family of BPI- and LBP-related proteins [J]. Trends in Immunology, 2004, 25(2): 53-55.
- [12] BEAMER L J, CARROLL S F, EISENBERG D. Crystal structure of human BPI and two bound phospholipids at 2. 4 angstrom resolution [J]. Science, 1997, 276(5320): 1861-1864.
- [13] KIRSCHNING C J, AU-YOUNG J, LAMPING N, et al. Similar organization of the lipopolysaccharide-binding protein (LBP) and phospholipid transfer protein (PLTP) genes suggests a common gene family of lipid-binding proteins [J]. Genomics, 1997, 46(3): 416-425.
- [14] SCHUMANN R R, LEONG S R, FLAGGS G W, et al. Structure and function of lipopolysaccharide binding protein [J]. Science, 1990, 249(4975): 1429-1431.
- [15] SUZUKI K, IZUMI S, TANAKA H, et al. Molecular cloning and expression analysis of the BPI/LBP cDNA and its gene from ayu, *Plecoglossus altivelis altivelis* [J]. Fisheries Science, 2009, 75(3): 673-681.
- [16] 杨春荣, 苏建国, 黄腾, 等. 草鱼 BPL/LBP 基因的克隆及特征研究 [J]. 西北农林科技大学学报 (自然科学版), 2011, 39(7): 8-14.
- [17] INAGAWA H, HONDA T, KOHCHI C, et al. Cloning and characterization of the homolog of mammalian lipopolysachttp://xuebaobangong.jmu.edu.cn/zkb

- charide-binding protein and bactericidal permeability-increasing protein in rainbow trout, *Oncorhynchus mykiss* [J]. Journal of Immunology, 2002, 168(11): 5638-5644.
- [18] KONO T, SAKAI M. Molecular cloning of a novel bactericidal permeability-increasing protein/lipopolysaccharide-binding protein (BPI/LBP) from common carp *Cyprinus carpio* and its expression [J]. Molecular Immunology, 2003, 40(5): 269-278.
- [19] STENVIK J, SOLSTAD T, STRAND C, et al. Cloning and analyses of a BPI/LBP cDNA of the Atlantic cod (Gadus morhua) [J]. Developmental & Comparative Immunology, 2004, 28(4): 307-323.
- [20] NAM B H, AHN K J, KIM Y O, et al. Molecular cloning and characterization of LPS-binding protein/bactericidal permeability-increasing protein (LBP/BPI) from olive flounder, *Paralichthys olivaceus* [J]. Veterinary Immunology & Immunopathology, 2010, 133(2/4); 256-263.
- [21] HUANG Y, LOU H, WU X, et al. Characterization of the BPI-like gene from a subtracted cDNA library of large yellow croaker (*Pseudosciaena crocea*) and induced expression by formalin-inactivated *Vibrio alginolyticus* and *Nocardia seriolae* vaccine challenges [J]. Fish & Shellfish Immunology, 2008, 25(6): 740-750.
- [22] KIM J W, GERWICK L, PARK C I. Molecular identification and expression analysis of two distinct BPI/LBPs (bactericidal permeability-increasing protein/LPS-binding protein) from rock bream, *Oplegnathus fasciatus* [J]. Fish & Shell-fish Immunology, 2012, 33(1):75-84.
- [23] TANG L, LIANG Y, JIANG Y, et al. Identification and expression analysis on bactericidal permeability-increasing protein/lipopolysaccharide-binding protein of blunt snout bream, *Megalobrama amblycephala* [J]. Fish & Shellfish Immunology, 2015, 45(2): 630-640.
- [24] 刘增胜, 李书民. 中国渔业年鉴 [M]. 北京: 中国农业出版社, 2015.
- [25] 段明珠,黄贝,梁英,等. 日本鳗鲡肝脏表达抗菌肽 2 基因的克隆与表达 [J]. 水生生物学报,2016,40(2):252-260.
- [26] BÜLOW E, GULLBERG U, OLSSON I. Structural requirements for intracellular processing and sorting of bactericidal/permeability-increasing protein (BPI): comparison with lipopolysaccharide-binding protein [J]. Journal of Leukocyte Biology, 2000, 68(5): 669-678.
- [27] BEAMER L J, CARROLL S F, EISENBERG D. The BPI/LBP family of proteins: a structural analysis of conserved regions [J]. Protein Science, 1998, 7(4): 906-914.
- [28] 王兴丽, 汪开毓, 陈德芳, 等. 斑点叉尾鮰 BPII 基因的原核表达及生物信息学分析 [J]. 水产学报, 2017, 41(1): 1-10.
- [29] XUP, BAOB, HEQ, et al. Characterization and expression analysis of bactericidal permeability-increasing protein (BPI) antimicrobial peptide gene from channel catfish, *Ictalurus punctatus* [J]. Developmental & Comparative Immunology, 2005, 29(10): 865-878.

(责任编辑 朱雪莲 英文审校 黄力行)