|本期目录/Table of Contents|

[1]廖祥文,林自芳,陈水利.基于词内部模式的中文新词识别研究[J].集美大学学报(自然科学版),2011,16(6):461-466.
 LIAO Xiang-wen,LIN Zi-fang,CHEN Shui-li.Research on Chinese New Word Identification Based on Inner Pattern of Word[J].Journal of Jimei University,2011,16(6):461-466.
点击复制

基于词内部模式的中文新词识别研究(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第16卷
期数:
2011年第6期
页码:
461-466
栏目:
数理科学与信息工程
出版日期:
2011-11-25

文章信息/Info

Title:
Research on Chinese New Word Identification Based on Inner Pattern of Word
作者:
廖祥文1林自芳1陈水利2
(1.福州大学数学与计算机科学学院,福建 福州 350108;2.集美大学理学院,福建 厦门 361021)
Author(s):
LIAO Xiang-wen1LIN Zi-fang1CHEN Shui-li2
(1.College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China;2.School of Science,Jimei University,Xiamen 361021,China)
关键词:
中文新词识别词内部模式字符位置似然概率支持向量机
Keywords:
Chinese new wordidentificationinner pattern of wordindependent word possibilitySVM
分类号:
-
DOI:
-
文献标志码:
-
摘要:
提出了一种基于支持向量机的中文新词识别算法.该算法结合新词内部模式以及词长等提出了基于词内部模式的改进字符位置似然概率,并综合新词的邻接类别等特征对新词进行识别.经过小说语料测试,实验结果表明:该算法的微F1值为0.583 3,宏F1值为0.775 7,分别比不考虑词内部模式的基准算法提高约63 %和30 %
Abstract:
In this paper,a Chinese new word identification approach based on a SVM classifier was propose.The method first introduced improved independent word possibility based on the inner pattern of string and POS,and then combined accessor variety and frequency statistical features to identify Chinese new words.Experimental results showed that Micro F1 and Macro F1 of the proposed method were 0.583 3 and 0.775 7 respectively.Compared with the method not considening inner pattern of word,the performance of the presented method improved about Micro F1 63 % and Macro F1 30 % respectively

参考文献/References:

-

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2018-06-13