|本期目录/Table of Contents|

[1]王宁,陈景锋.基于油液监测的柴油机磨损故障诊断系统[J].集美大学学报(自然科学版),2012,17(3):212-216.
 WANG NingCHEN Jing-feng.Diesel Engine Wear Fault Diagnosis System Based on the Oil Monitoring Technology[J].Journal of Jimei University,2012,17(3):212-216.
点击复制

基于油液监测的柴油机磨损故障诊断系统(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第17卷
期数:
2012年第3期
页码:
212-216
栏目:
船舶与机械工程
出版日期:
2012-05-25

文章信息/Info

Title:
Diesel Engine Wear Fault Diagnosis System Based on the Oil Monitoring Technology
作者:
王宁1陈景锋2
(集美大学轮机工程学院,福建 厦门 361021)
Author(s):
WANG NingCHEN Jing-feng
(Marine Engineering Institute,Jimei University,Xiamen 361021,China)
关键词:
柴油机油液监测故障诊断
Keywords:
oil Monitoringexpert systemC#sqlServerrule-based knowledgeweight Selection diesel engine wear fault diagnosis system
分类号:
-
DOI:
-
文献标志码:
-
摘要:
       运用专家系统的原理和构建方法,建立了知识库模型,编写了搜索推理代码,并在此基础上基于C#和SqlServer采用油液分析技术中的光谱分析、铁谱分析和常规理化分析,柴油机磨损故障诊断系统.该系统可用于诊断磨损的部位、类型和性质.以济南柴油机厂的4190柴油机为研究对象,对该系统进行了检验,实验结果表明该系统能够定位柴油机磨损故障的部位,并诊断其故障性质及原因
Abstract:
Three common oil analysis techniques,namely Spectrometric analysis,Ferrography analysis,and Oil chemical-physics analysis,and in this paper,the expert system theory and method for building it have been introduced together;on base of establishing the knowledge model and writing the search reasoning code,a wear fault diagnosis system by using of C# and SqlServer which used to diagnose the wear failure reason and nature has been completed. With experts knowledge in the field of Oil Monitoring,established the rule knowledge and its weights;Use the Jinan Diesel Engine Factory 4190 diesel as the object of study,verified this system can locate the mechanical failure parts and the reason,nature of the Diesel engine wear failure

参考文献/References:

-

相似文献/References:

[1]王荣杰.基于相似度的电力电子电路故障诊断技术[J].集美大学学报(自然科学版),2010,15(5):372.
[2]王永坚,陈景锋,杨小明.基于油液分析的船舶尾轴承状态监测与故障诊断[J].集美大学学报(自然科学版),2014,19(4):285.
 WANG Yong-jian,CHEN Jing-feng,YANG Xiao-ming.Condition Monitoring and Fault Diagnosis for Ship Stern Bearing Based on Lube Oil Monitoring Analysis[J].Journal of Jimei University,2014,19(3):285.
[3]崔博文.基于小波神经网络的逆变器功率开关故障诊断[J].集美大学学报(自然科学版),2017,22(1):46.
 CUI Bowen.Open-circuit Faults Diagnosis of Power Device inInverter Based on Wavelet and Neural Network[J].Journal of Jimei University,2017,22(3):46.
[4]罗方芳,陶求华.基于级联极限学习机的基站空调在线监测系统[J].集美大学学报(自然科学版),2018,23(6):475.
 LUO Fangfang,TAO Qiuhua.Air Conditioning Online Monitoring System for Base Station Based on Cascaded Extreme Learning Machines[J].Journal of Jimei University,2018,23(3):475.
[5]田维,崔博文.基于小波包和支持向量机的逆变器故障诊断[J].集美大学学报(自然科学版),2019,24(2):125.
 TIAN Wei,CUI Bowen.Faults Diagnosis of Inverter Based on Wavelet Packet Decomposition and SVM[J].Journal of Jimei University,2019,24(3):125.
[6]韩冉,曾广淼,王荣杰.Sepic变换器的开关管故障诊断[J].集美大学学报(自然科学版),2019,24(4):299.
 HAN Ran,ZENG Guangmiao,WANG Rongjie.Switching Fault Diagnosis of Sepic Converter[J].Journal of Jimei University,2019,24(3):299.
[7]胡欢欢,王永坚,邱晨.HHT和马氏距离融合的船用空压机故障诊断[J].集美大学学报(自然科学版),2020,25(1):50.
 HU HuanhuanWANG Yongjian,QIU Chen.Research of Fault Diagnosis of Ship’s Air Compressor with HHT Marginal Spectrum and Mahalanobis Distance[J].Journal of Jimei University,2020,25(3):50.
[8]曹家瑜,于洪亮,闫锦,等.基于全频谱技术的油膜诱发转子失稳的故障诊断[J].集美大学学报(自然科学版),2020,25(3):202.
 CAO Jiayu,YU Hongliang,YAN Jin,et al.Diagnostic Analysis of Oil Film Induced Rotor Instability Based on Full Spectrum Plot Technology[J].Journal of Jimei University,2020,25(3):202.
[9]苏家懿,崔博文.基于PCA-BLS的逆变器故障诊断[J].集美大学学报(自然科学版),2021,26(2):168.
 SU Jiayi,CUI Bowen.Inverter Fault Diagnosis Based on Broad Learning System[J].Journal of Jimei University,2021,26(3):168.
[10]曾超俊,王荣杰,王亦春,等.一种基于EMD-BLS的三相整流电路故障诊断方法[J].集美大学学报(自然科学版),2021,26(4):357.
 ZENG Chaojun,WANG Rongjie,WANG Yichun,et al.A Fault Diagnosis Method of Three-Phase Rectifier Based on Empirical Mode Decomposition and Broad Learning System[J].Journal of Jimei University,2021,26(3):357.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2014-06-28