|本期目录/Table of Contents|

[1]林清英,黄龙光.集值拟变分不等式的间隙函数[J].集美大学学报(自然科学版),2013,18(2):134-139.
 LIN Qing-ying,HUANG Long -guang.Gap Function for Set-valued Quasi-variational Inequalities[J].Journal of Jimei University,2013,18(2):134-139.
点击复制

集值拟变分不等式的间隙函数(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第18卷
期数:
2013年第2期
页码:
134-139
栏目:
数理科学与信息工程
出版日期:
2013-03-25

文章信息/Info

Title:
Gap Function for Set-valued Quasi-variational Inequalities
作者:
林清英黄龙光
(集美大学理学院,福建 厦门 361021 )
Author(s):
LIN Qing-yingHUANG Long -guang
( School of Science,Jimei University,Xiamen 361021, China)
关键词:
集值拟变分不等式间隙函数误差边界
Keywords:
set -valued quasi-variational inequalitiesgap functionerror bounds
分类号:
-
DOI:
-
文献标志码:
-
摘要:
        利用有限维空间中拟变分不等式理论,讨论严格凸光滑赋范线性空间集值映射的拟变分不等式.通过估计原理,引入集值拟变分不等式的间隙函数,给出间隙函数的有关性质,建立它的误差边界,得到间隙函数在T为弱*紧值的μ-强伪单调集值映射,S在不动点处为对称或局部α-Holder集值映射条件下的误差估计,并给出在广义纳什均衡问题中的应用
Abstract:
By using the relevant theorem of quasi -variational inequalities in the finite dimensional space,the quasi -variational inequalities for set -valued maps in the strongly convex smooth linear norm space were established.Gap function for set -valued quasi-variational inequalities was introduced by an axiomatic approach and the properties of the gap function were provided.Then error bounds of the gap function were given and error estimates were obtained under the condition that T was μ-strong pseudomonotonous set -valued map with nonempty compact values and S was fixead point symmetric or locally α-Holder set-valued map.Applications to generalized Nash equilibrium problems were considered.

参考文献/References:

-

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2014-06-28