[1]李叶妮,林晓佳,陈吉鹏,等.基于灰度共生矩和SVM的碳化竹条瑕疵识别[J].集美大学学报(自然科学版),2017,22(3):49-54.
LI Yeni,LIN Xiaojia,CHEN Jipeng,et al.Defects Identification for Carbonization Bamboos Based on GLCM and SVM[J].Journal of Jimei University,2017,22(3):49-54.
点击复制
基于灰度共生矩和SVM的碳化竹条瑕疵识别(PDF)
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第22卷
- 期数:
-
2017年第3期
- 页码:
-
49-54
- 栏目:
-
船舶与机械工程
- 出版日期:
-
2017-05-28
文章信息/Info
- Title:
-
Defects Identification for Carbonization Bamboos Based on GLCM and SVM
- 作者:
-
李叶妮1; 2; 林晓佳1; 陈吉鹏1; 陈水宣1
-
(1.厦门理工学院机械与汽车工程学院,福建 厦门 361024;2.厦门大学航空航天学院,福建 厦门 361005)
- Author(s):
-
LI Yeni1; 2; LIN Xiaojia1; CHEN Jipeng1; CHEN Shuixuan1
-
(1.School of Mechanical and Automotive Engineering,Xiamen University of Technology,Xiamen 361024,China;2.School of Aerospace Engineering,Xiamen University,Xiamen 361005,China)
-
- 关键词:
-
碳化竹条; 瑕疵识别; 灰度共生矩; SVM
- Keywords:
-
carbonization bamboo; defect recognition; GLCM; SVM
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
A
- 摘要:
-
针对碳化竹条瑕疵种类多,位置不确定且竹纹理干扰的问题,利用图像处理技术对竹条图像进行阈值分割,图像滤波等预处理,得到特征明显的图像,从而实现其表面瑕疵特征的识别。通过计算确定灰度共生矩阵的三个构造因子,提取了图像的三个纹理特征,采用一对一淘汰策略的多类SVM(support vector machine)学习模型进行分类识别竹条的瑕疵类型。实验结果表明,该方法对于碳化竹条的黑结、虫蛀、染色、霉点、裂痕等缺陷的正确识别率达到90.6%以上。
- Abstract:
-
In observation of realization of the surface flaw feature recognition,the bamboo original image was pretreated by image graying,Otsu threshold and mean filtering by taking into account of the effect from defects of carbonized bamboo and location uncertainties.Influences from various building factors on GLCM(gray level co-occurrence matrix) and its parameters were invetigated,and the method for establishment of GLCM suitable for describing bamboo surface texture was presented.A class of SVM learning model with one to one replacement strategy was employed to classify and identify the defect types of bamboo.Result shows that the method can classify the five common types of the bamboo defects which includs black node,wormhole,dyeing,mildew and crack with an accuracy higher than 90.6%.
参考文献/References:
-
相似文献/References:
更新日期/Last Update:
2017-09-10