|本期目录/Table of Contents|

[1]危国华.空间分数阶扩散方程的多项式点插值配置法[J].集美大学学报(自然科学版),2018,23(2):150-155.
 WEI Guohua.Polynomial Point Interpolation Collocation Method for Spatial Fractional Diffusion Equation[J].Journal of Jimei University,2018,23(2):150-155.
点击复制

空间分数阶扩散方程的多项式点插值配置法(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第23卷
期数:
2018年第2期
页码:
150-155
栏目:
数理科学与信息工程
出版日期:
2018-03-28

文章信息/Info

Title:
Polynomial Point Interpolation Collocation Method for Spatial Fractional Diffusion Equation
作者:
危国华
(福建广播电视大学三明分校,福建 三明 365000)
Author(s):
WEI Guohua
(Sanming Branch,The Open University of Fujian,Sanming 365000,China)
关键词:
空间分数阶微分方程多项式基配置法Riemann-Liouville分数阶导数形函数
Keywords:
spatial fractional differential equationpolynomialcollocation methodRiemann-Liouville fractional derivativeshape function
分类号:
-
DOI:
-
文献标志码:
A
摘要:
采用多项式基点插值配置法求解带有双侧导数的空间分数阶微分方程。首先给出利用多项式基点插值离散得到的数值逼近格式,然后给出数值算例,分别采用规则点和散点离散空间变量,均得到近似程度较好的计算结果,很好地验证了所提出数值方法的有效性
Abstract:
In this paper,we make the first attempt to apply polynomial point interpolation collocation method for solving spatial fractional differential equation with two-side derivative.Firstly,numerical approximation scheme was obtained by polynomial point interpolation.Then numerical examples,discretizing space variable with both regular nodes and irregular nodes,had good approximation results,which testified the validity of the proposed numerical method.

参考文献/References:

-

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2018-05-24