|本期目录/Table of Contents|

[1]丁小虎,陈宁.港口集装箱自主识别定位技术[J].集美大学学报(自然科学版),2019,24(4):290-298.
 DING Xiaohu,CHEN Ning.Autonomous Recognition and Location Technology of Port Container[J].Journal of Jimei University,2019,24(4):290-298.
点击复制

港口集装箱自主识别定位技术(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第24卷
期数:
2019年第4期
页码:
290-298
栏目:
船舶与机械工程
出版日期:
2019-07-28

文章信息/Info

Title:
Autonomous Recognition and Location Technology of Port Container
作者:
丁小虎陈宁
(集美大学机械与能源工程学院,福建 厦门 361021)
Author(s):
DING XiaohuCHEN Ning
(School of Mechanical and Energy Engineering,Jimei University,Xiamen 361021,China)
关键词:
集装箱双目视觉深度学习三维定位
Keywords:
containerbinocular visiondeep learningthree-dimensional positioning
分类号:
-
DOI:
-
文献标志码:
A
摘要:
针对港口集装箱自动装卸问题,结合双目视觉和深度学习技术,设计了一种基于Faster R-CNN(faster regions with convolutional neural network)模型的集装箱三维识别定位方法。首先利用双目摄像头采集装箱图像,用于训练Faster R-CNN模型,然后使用该模型检测图像中的集装箱目标,对识别出的目标添加矩形框,并提取其中心点图像坐标,接着通过对双目摄像头进行标定和匹配,获取集装箱矩形框中图像坐标点的深度,实现对集装箱的三维定位,最后将集装箱的三维坐标转换到轮胎吊吊具坐标系下,获得所有集装箱目标中心和吊具中心距离。实验结果表明,系统运行速度可以达到30 fps,平均定位误差在5 mm以内,系统可以有效解决集装箱三维实时识别和定位问题,提升港口集装箱自动化装卸能力。
Abstract:
In view of the problems of automatic container operation,and combining binocular vision with deep learning,a container 3D recognition and location method based on Faster R-CNN model is presented.The paper firstly uses the image information of the containers acquired by binocular camera to train Faster R-CNN model,then detects the targets according to the model for getting the rectangular box of the container and its center coordinate of frame.In order to get the depth of the containers to realize the three-dimensional positioning,the binocular depth camera has been calibrated and matched.Finally,the coordinates are converted into the coordinate system of the tire hanging spreader to calculate the distance between all the containers center and spreader center.The results show that the system can reach 30fps,and the average position of error is within 5mm.The system can effectively solve the three-dimensional real-time recognition and location problem of container,and improve the automatic operation level for handing the containers at port.

参考文献/References:

相似文献/References:

[1]靳志宏,徐奇,兰辉.集装箱多式联运的多维数据分析与数据挖掘[J].集美大学学报(自然科学版),2011,16(4):268.
 JIN Zhi-hong,XU Qi,LAN Hui.The Multi-dimensional Data Analysis and Data Mining for Container Multimodal Transportation[J].Journal of Jimei University,2011,16(4):268.
[2]庄志忠.福州港公路集装箱集疏运设备的折旧方法[J].集美大学学报(自然科学版),2022,27(2):146.
 ZHUANG Zhizhong.Analysis on Depreciation Method of Highway Container Collection,Distribution and Transportation Equipment of Fuzhou Port[J].Journal of Jimei University,2022,27(4):146.
[3]任律珍,孙锐,杨金湘,等.厦门海域落水集装箱漂移路径的数值模拟[J].集美大学学报(自然科学版),2024,29(3):222.
 REN Lüzhen,SUN Rui,YANG Jinxiang,et al.Numerical Modeling Study of Drifting Trajectory of Falling Containers in Xiamen Sea Area[J].Journal of Jimei University,2024,29(4):222.

备注/Memo

备注/Memo:
更新日期/Last Update: 2019-08-31