[1]陈锦文,兰培真.改进型BP神经网络的港口吞吐量预测[J].集美大学学报(自然科学版),2019,24(5):352-357.
CHEN Jinwen,LAN Peizhen.Port Throughput Prediction Based on Improved BP Neural Network[J].Journal of Jimei University,2019,24(5):352-357.
点击复制
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第24卷
- 期数:
-
2019年第5期
- 页码:
-
352-357
- 栏目:
-
航海技术与物流工程
- 出版日期:
-
2019-09-28
文章信息/Info
- Title:
-
Port Throughput Prediction Based on Improved BP Neural Network
- 作者:
-
陈锦文1; 2; 兰培真1; 2
-
(1.集美大学海上交通安全研究所,福建 厦门 361021 ;2.交通安全应急信息技术国家工程实验室,福建 厦门 361021 )
- Author(s):
-
CHEN Jinwen1; 2; LAN Peizhen 1; 2
-
(1.Maritime Traffic Safety Institute,Jimei University,Xiamen 361021, China;2.National Engineering Laboratory for the Emergency Information Technology of Traffic Safety,Xiamen 361021, China)
-
- 关键词:
-
港口吞吐量; 时间序列; BP神经网络; 预测模型
- Keywords:
-
port throughput; time series; BP neural network; predicting model
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
-
- 摘要:
-
为了提高港口吞吐量预测模型的适用性,满足港口决策的需求,对传统时间序列BP神经网络预测模型进行改进,将未来三年的吞吐量作为输出层参数,以tansig函数和logsig函数为传递函数,建立了改进型时间序列BP神经网络预测模型,利用trainlm函数训练神经网络,预测未来三年的港口吞吐量。对深圳港集装箱吞吐量进行了预测,结果表明,改进型时间序列BP神经网络模型泛化能力更强,拟合精度更高,且避免了传统预测模型循环预测产生的误差叠加,具有较好的适用性。
- Abstract:
-
In order to improve the applicability of the port throughput prediction model and meet the requirements of port decision-making the traditional prediction model of time series based on BP neural network is improved.An improved prediction model of time series based on BP neural network is established by taking the throughput of the next three years as the output layer parameter.Meanwhile,the functions of tansig and logsig are used as the transfer function.The function of trainlm is utilized to train the neural network to predict the port throughput of the next three years.The forecasting of container throughput of Shenzhen Port indicates that the improved prediction model of time series based on BP neural network has stronger ability of generalization and higher fitting degree.As a result,it avoids the error superposition generated by the loop prediction of traditional model and has good applicability.
参考文献/References:
-
相似文献/References:
更新日期/Last Update:
2019-11-04