|本期目录/Table of Contents|

[1]胡欢欢,王永坚,邱晨.HHT和马氏距离融合的船用空压机故障诊断[J].集美大学学报(自然科学版),2020,25(1):50-56.
 HU HuanhuanWANG Yongjian,QIU Chen.Research of Fault Diagnosis of Ship’s Air Compressor with HHT Marginal Spectrum and Mahalanobis Distance[J].Journal of Jimei University,2020,25(1):50-56.
点击复制

HHT和马氏距离融合的船用空压机故障诊断(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第25卷
期数:
2020年第1期
页码:
50-56
栏目:
船舶与机械工程
出版日期:
2020-01-28

文章信息/Info

Title:
Research of Fault Diagnosis of Ship’s Air Compressor with HHT Marginal Spectrum and Mahalanobis Distance
作者:
胡欢欢王永坚邱晨
(集美大学轮机工程学院, 福建 厦门 361021)
Author(s):
HU HuanhuanWANG YongjianQIU Chen
(School of Marine EngineeringJimei University,Xiamen 361021,China)
关键词:
船用往复式二级空压机故障诊断HHT边际谱马氏距离
Keywords:
ship-reciprocating double stage air compressorfault diagnosisHHT marginal spectrumMahalanobis distance
分类号:
-
DOI:
-
文献标志码:
-
摘要:
为了诊断船用二级往复式空压机最常见的活塞环断裂故障,提出一种将HHT(hilbert-huang transfarm)边际谱和马氏距离相融合的方法。通过空压机正常状态和人为模拟一、二级活塞环断环的实验,采集正常和故障状态下的一、二级缸套和缸盖振动信号。利用HHT算法处理采集的数据,获取HHT边际谱,以空压机固有频段能量值为特征值和马氏距离为分类器,识别其故障类型。实验表明:该方法可以准确、有效地诊断出船用二级往复式空压机活塞断环故障。
Abstract:
In order to solve the nonlinear and nonstationary problems of the fault signals of cylinder-piston ring groups of ship’s reciprocating double stage air compressors,based on the HHT(hilberthuang transform) having the ability of processing such signals,a fault diagnosis method for ship’s air compressors with HHT marginal spectrum and Mahalanobis distance was proposed in this paper to diagnose the most common faults on piston fractures.Through experiments on the normal state and artificial simulations of the first and second pistons breaking rings of the compressor,the vibration signals of the first-second cylinder sleeves and cylinder sleeves and cylinder heads were collected under the normal and fault conditions.Through HHT marginal spectrum were obtained by employing HHT algorithm on processing the collected data.The natural frequency band and the Mahalanobis distance was respectively introduced to as the characterized energy value and the classifier for diagnose faults.The experiments show that the method can identify and diagnose the fault on ship’s reciprocating double stage air compressors accurately and effectively,which to some extent provides a theoretical basis and practical reference for the most common fault identification and diagnosis of the ship compressor.

参考文献/References:

-

相似文献/References:

[1]王荣杰.基于相似度的电力电子电路故障诊断技术[J].集美大学学报(自然科学版),2010,15(5):372.
[2]王宁,陈景锋.基于油液监测的柴油机磨损故障诊断系统[J].集美大学学报(自然科学版),2012,17(3):212.
 WANG NingCHEN Jing-feng.Diesel Engine Wear Fault Diagnosis System Based on the Oil Monitoring Technology[J].Journal of Jimei University,2012,17(1):212.
[3]王永坚,陈景锋,杨小明.基于油液分析的船舶尾轴承状态监测与故障诊断[J].集美大学学报(自然科学版),2014,19(4):285.
 WANG Yong-jian,CHEN Jing-feng,YANG Xiao-ming.Condition Monitoring and Fault Diagnosis for Ship Stern Bearing Based on Lube Oil Monitoring Analysis[J].Journal of Jimei University,2014,19(1):285.
[4]崔博文.基于小波神经网络的逆变器功率开关故障诊断[J].集美大学学报(自然科学版),2017,22(1):46.
 CUI Bowen.Open-circuit Faults Diagnosis of Power Device inInverter Based on Wavelet and Neural Network[J].Journal of Jimei University,2017,22(1):46.
[5]罗方芳,陶求华.基于级联极限学习机的基站空调在线监测系统[J].集美大学学报(自然科学版),2018,23(6):475.
 LUO Fangfang,TAO Qiuhua.Air Conditioning Online Monitoring System for Base Station Based on Cascaded Extreme Learning Machines[J].Journal of Jimei University,2018,23(1):475.
[6]田维,崔博文.基于小波包和支持向量机的逆变器故障诊断[J].集美大学学报(自然科学版),2019,24(2):125.
 TIAN Wei,CUI Bowen.Faults Diagnosis of Inverter Based on Wavelet Packet Decomposition and SVM[J].Journal of Jimei University,2019,24(1):125.
[7]韩冉,曾广淼,王荣杰.Sepic变换器的开关管故障诊断[J].集美大学学报(自然科学版),2019,24(4):299.
 HAN Ran,ZENG Guangmiao,WANG Rongjie.Switching Fault Diagnosis of Sepic Converter[J].Journal of Jimei University,2019,24(1):299.
[8]曹家瑜,于洪亮,闫锦,等.基于全频谱技术的油膜诱发转子失稳的故障诊断[J].集美大学学报(自然科学版),2020,25(3):202.
 CAO Jiayu,YU Hongliang,YAN Jin,et al.Diagnostic Analysis of Oil Film Induced Rotor Instability Based on Full Spectrum Plot Technology[J].Journal of Jimei University,2020,25(1):202.
[9]苏家懿,崔博文.基于PCA-BLS的逆变器故障诊断[J].集美大学学报(自然科学版),2021,26(2):168.
 SU Jiayi,CUI Bowen.Inverter Fault Diagnosis Based on Broad Learning System[J].Journal of Jimei University,2021,26(1):168.
[10]曾超俊,王荣杰,王亦春,等.一种基于EMD-BLS的三相整流电路故障诊断方法[J].集美大学学报(自然科学版),2021,26(4):357.
 ZENG Chaojun,WANG Rongjie,WANG Yichun,et al.A Fault Diagnosis Method of Three-Phase Rectifier Based on Empirical Mode Decomposition and Broad Learning System[J].Journal of Jimei University,2021,26(1):357.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2020-04-17