|本期目录/Table of Contents|

[1]潘丽芳,谢书童,曹秀娟.ECOC多分类算法在慕课数据挖掘中的应用[J].集美大学学报(自然科学版),2021,26(2):146-151.
 PAN Lifang,XIE Shutong,CAO Xiujuan.Application of Multi-Classification Algorithms Based on ECOC in MOOC Data Mining[J].Journal of Jimei University,2021,26(2):146-151.
点击复制

ECOC多分类算法在慕课数据挖掘中的应用(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第26卷
期数:
2021年第2期
页码:
146-151
栏目:
数理科学与信息工程
出版日期:
2021-03-28

文章信息/Info

Title:
Application of Multi-Classification Algorithms Based on ECOC in MOOC Data Mining
作者:
潘丽芳1谢书童2曹秀娟2
(1.集美大学理学院,福建 厦门 361021;2.集美大学计算机工程学院,福建 厦门 361021)
Author(s):
PAN Lifang1XIE Shutong2CAO Xiujuan2
(1.School of Science,Jimei University,Xiamen 361021,China;2.College of Computer Engineering,Jimei University,Xiamen 361021,China)
关键词:
ECOC多分类慕课成绩预测教育数据挖掘
Keywords:
ECOCmulti-classificationMOOCgrade predictioneducational data mining
分类号:
-
DOI:
-
文献标志码:
-
摘要:
收集并整合多所高校学生的慕课学习行为数据,设计基于数据复杂度的纠错输出编码(ECOC)多分类算法。该算法利用数据复杂度降低多类之间的分类难度,从而提高算法的预测准确度。实验结果表明,在不同高校的慕课数据集的测试中,所设计基于数据复杂度的ECOC分类算法比传统的ECOC算法具有更高的分类准确度和鲁棒性,实现了学生学习成绩多等级的有效预测,为个性化教学奠定了基础。
Abstract:
This research collected and integrated the data of learning behaviors of students from many colleges through MOOC platform,and designed ECOC multi-classification algorithms based on data complexity.The algorithms use data complexity to reduce the classification complexity between multiple categories,thereby improving the prediction accuracy of the algorithms.The experimental results showed that the ECOC classification algorithms based on data complexity proposed in this paper have higher classification accuracy and robustness than the classic ECOC algorithms in MOOC data sets of different colleges.The proposed algorithms perform effective prediction of students academic performance,which lays a foundation to realize the personalized teaching for the students.

参考文献/References:

-

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2021-05-17