[1]孙世丹,郑佳春,赵世佳,等.基于YOLO改进算法的安全帽和口罩佩戴自动同时检测[J].集美大学学报(自然科学版),2021,26(4):379-384.
SUN Shidan,ZHENG Jiachun,ZHAO Shijia,et al.Automatic Simultaneous Detection of Helmet and Mask Wearing Based on Improved YOLO Algorithm[J].Journal of Jimei University,2021,26(4):379-384.
点击复制
基于YOLO改进算法的安全帽和口罩佩戴自动同时检测(PDF)
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第26卷
- 期数:
-
2021年第4期
- 页码:
-
379-384
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2021-07-28
文章信息/Info
- Title:
-
Automatic Simultaneous Detection of Helmet and Mask Wearing Based on Improved YOLO Algorithm
- 作者:
-
孙世丹1; 郑佳春1; 赵世佳1; 黄一琦2
-
(1.集美大学海洋信息工程学院,福建 厦门 361021;2.集美大学航海学院,福建 厦门 361021)
- Author(s):
-
SUN Shidan1; ZHENG Jiachun1; ZHAO Shijia1; HUANG Yiqi2
-
(1.School of Marine Information Engineering,Jimei University,Xiamen 361021,China;2.Navigation Institute,Jimei University,Xiamen 361021,China)
-
- 关键词:
-
同时检测; YOLOv3算法; K-means聚类; 安全帽佩戴检测; 口罩佩戴检测
- Keywords:
-
simultaneous determination; YOLO v3 algorithm; K-means clustering algorithm; helmet wearing test; mask wear detection
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
A
- 摘要:
-
针对工地、危险区域等场景需要实现同时佩戴安全帽与口罩的自动检测问题,提出一种改进的YOLOv3算法以提高同时检测安全帽和口罩佩戴的准确率。首先,对网络模型中的聚类算法进行优化,使用加权核K-means聚类算法对训练数据集聚类分析,选取更适合小目标检测的Anchor Box,以提高检测的平均精度和速度;然后,优化YOLO网络内部的Darknet特征网络层,将4倍降采样提取的特征图进行2倍上采样,再与2倍降采样进行卷积融合,与4倍降采样、8倍降采样以及16倍降采样一同输送到后续网络中,来达到降低小目标的漏检概率。实验结果表明:改进后的算法同时检测安全帽和口罩佩戴的平均准确率比原算法提高了11.3%。
- Abstract:
-
Aiming at the problem of automatic detection of wearing helmets and masks at the same time in the scene of construction site and dangerous area,an improved YOLOv3 algorithm is proposed to enhance the detection accuracy of helmets and masks.Firstly,the clustering algorithm in network is optimized.The weighted kernel Kmeans clustering algorithm is used to analyze the dataset,so as to select the anchor box more suitable for small targets detection and improve the average accuracy and speed of detection.Secondly,it optimizes the Darknet characteristic network layer in YOLO network.The extracted quadruple down sampling feature map is up sampling once.The double up sampling is fused with the previous double down sampling,and then it is transmitted to the subsequent network together with quadruple down sampling,eightfold down sampling and sixteen times down sampling to reduce the miss detection rate of small targets.Experimental results show that,the average detection accuracy of the improved algorithm is improved by 11.3% when the helmets and masks are worn at the same time.
参考文献/References:
-
相似文献/References:
更新日期/Last Update:
2021-09-19