|本期目录/Table of Contents|

[1]曾超俊,王荣杰,王亦春,等.一种基于EMD-BLS的三相整流电路故障诊断方法[J].集美大学学报(自然科学版),2021,26(4):357-364.
 ZENG Chaojun,WANG Rongjie,WANG Yichun,et al.A Fault Diagnosis Method of Three-Phase Rectifier Based on Empirical Mode Decomposition and Broad Learning System[J].Journal of Jimei University,2021,26(4):357-364.
点击复制

一种基于EMD-BLS的三相整流电路故障诊断方法(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第26卷
期数:
2021年第4期
页码:
357-364
栏目:
船舶与机械工程
出版日期:
2021-07-28

文章信息/Info

Title:
A Fault Diagnosis Method of Three-Phase Rectifier Based on Empirical Mode Decomposition and Broad Learning System
作者:
曾超俊1王荣杰12王亦春12郜怀通1林安辉12韩冉1
(1.集美大学轮机工程学院,福建 厦门 361021;2.福建省船舶与海洋工程重点实验室,福建 厦门 361021)
Author(s):
ZENG Chaojun1WANG Rongjie12WANG Yichun12GAO Huaitong1LIN Anhui12 HAN Ran1
(1.School of Marine Engineering,Jimei University,Xiamen 361021,China;2.Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering,Xiamen 361021,China)
关键词:
三相整流电路故障诊断经验模态分解宽度学习系统
Keywords:
three-phase rectifierfault diagnosisempirical mode decompositionbroad learning system
分类号:
-
DOI:
-
文献标志码:
A
摘要:
针对三相整流电路的故障诊断,提出了一种基于经验模式分解和宽度学习系统相结合的三相整流电路故障诊断方法。首先利用经验模式分解方法对故障信号进行分解,提取基本模式分量的能量作为特征信号;然后再利用时间复杂度、低分类高精度的宽度学习系统建立故障诊断的分类模型,有效地完成三相整流电路的故障分类。实验结果表明,经验模式分解特征提取效果显著,宽度学习系统故障分类器具有较好的适应性,较快的计算速度和较高的准确度。
Abstract:
For the fault diagnosis of three-phase rectifier circuit,this paper proposes a fault diagnosis method of three-phase rectifier circuit based on the combination of empirical mode decomposition and broad learning system.The method first uses the empirical mode decomposition method to decompose the fault signal and extract the basic mode energy of the component as the characteristic signal,and then the broad learning system with low time complexity and high classification accuracy is used to establish classification model for fault diagnosis,which effectively accomplish the fault classification of the three-phase rectifier circuit.The experimental results show that the empirical mode decomposition feature extraction effect is significant,the broad learning system fault classifier has better adaptability,faster calculation speed and higher accuracy.

参考文献/References:

-

相似文献/References:

[1]王荣杰.基于相似度的电力电子电路故障诊断技术[J].集美大学学报(自然科学版),2010,15(5):372.
[2]王宁,陈景锋.基于油液监测的柴油机磨损故障诊断系统[J].集美大学学报(自然科学版),2012,17(3):212.
 WANG NingCHEN Jing-feng.Diesel Engine Wear Fault Diagnosis System Based on the Oil Monitoring Technology[J].Journal of Jimei University,2012,17(4):212.
[3]王永坚,陈景锋,杨小明.基于油液分析的船舶尾轴承状态监测与故障诊断[J].集美大学学报(自然科学版),2014,19(4):285.
 WANG Yong-jian,CHEN Jing-feng,YANG Xiao-ming.Condition Monitoring and Fault Diagnosis for Ship Stern Bearing Based on Lube Oil Monitoring Analysis[J].Journal of Jimei University,2014,19(4):285.
[4]崔博文.基于小波神经网络的逆变器功率开关故障诊断[J].集美大学学报(自然科学版),2017,22(1):46.
 CUI Bowen.Open-circuit Faults Diagnosis of Power Device inInverter Based on Wavelet and Neural Network[J].Journal of Jimei University,2017,22(4):46.
[5]罗方芳,陶求华.基于级联极限学习机的基站空调在线监测系统[J].集美大学学报(自然科学版),2018,23(6):475.
 LUO Fangfang,TAO Qiuhua.Air Conditioning Online Monitoring System for Base Station Based on Cascaded Extreme Learning Machines[J].Journal of Jimei University,2018,23(4):475.
[6]田维,崔博文.基于小波包和支持向量机的逆变器故障诊断[J].集美大学学报(自然科学版),2019,24(2):125.
 TIAN Wei,CUI Bowen.Faults Diagnosis of Inverter Based on Wavelet Packet Decomposition and SVM[J].Journal of Jimei University,2019,24(4):125.
[7]韩冉,曾广淼,王荣杰.Sepic变换器的开关管故障诊断[J].集美大学学报(自然科学版),2019,24(4):299.
 HAN Ran,ZENG Guangmiao,WANG Rongjie.Switching Fault Diagnosis of Sepic Converter[J].Journal of Jimei University,2019,24(4):299.
[8]胡欢欢,王永坚,邱晨.HHT和马氏距离融合的船用空压机故障诊断[J].集美大学学报(自然科学版),2020,25(1):50.
 HU HuanhuanWANG Yongjian,QIU Chen.Research of Fault Diagnosis of Ship’s Air Compressor with HHT Marginal Spectrum and Mahalanobis Distance[J].Journal of Jimei University,2020,25(4):50.
[9]曹家瑜,于洪亮,闫锦,等.基于全频谱技术的油膜诱发转子失稳的故障诊断[J].集美大学学报(自然科学版),2020,25(3):202.
 CAO Jiayu,YU Hongliang,YAN Jin,et al.Diagnostic Analysis of Oil Film Induced Rotor Instability Based on Full Spectrum Plot Technology[J].Journal of Jimei University,2020,25(4):202.
[10]苏家懿,崔博文.基于PCA-BLS的逆变器故障诊断[J].集美大学学报(自然科学版),2021,26(2):168.
 SU Jiayi,CUI Bowen.Inverter Fault Diagnosis Based on Broad Learning System[J].Journal of Jimei University,2021,26(4):168.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2021-09-19