|本期目录/Table of Contents|

[1]崔博文,陶成蹊,田维.基于三分类支持向量机的船用逆变器故障诊断[J].集美大学学报(自然科学版),2021,26(5):447-452.
 CUI Bowen,TAO Chengxi,TIAN Wei.Tri-Class Support Vector Machines Based Fault Diagnosis of Marine Inverter[J].Journal of Jimei University,2021,26(5):447-452.
点击复制

基于三分类支持向量机的船用逆变器故障诊断(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第26卷
期数:
2021年第5期
页码:
447-452
栏目:
船舶与机械工程
出版日期:
2021-09-28

文章信息/Info

Title:
Tri-Class Support Vector Machines Based Fault Diagnosis of Marine Inverter
作者:
崔博文陶成蹊田维
(集美大学轮机工程学院,福建 厦门 361021)
Author(s):
CUI BowenTAO ChengxiTIAN Wei
(School of Marine Engineering,Jimei University,Xiamen 361021,China)
关键词:
逆变器故障诊断支持向量机三分类
Keywords:
inverterfault diagnosissupport vector machinestri-classification
分类号:
-
DOI:
-
文献标志码:
A
摘要:
针对电力推进船舶逆变器存在的开关器件开路故障诊断问题,提出一种基于三分类支持向量机的故障诊断方法。利用对称分量分析方法获得逆变器输出正序瞬时值分量,通过对信号进行小波包分解,得到不同开关元件故障下的小波能量,规范化后作为对应开关器件故障特征。根据开关器件位置和逆变器输出波形特点对开关器件进行分组,利用三分类支持向量机实现故障分类。仿真分析结果表明,该三分类支持向量机故障分类正确率94.29%,诊断方法有效。
Abstract:
Aimed at fault diagnosis of power switch with the marine inverter of electric propulsion ship,the paper presents a triclass support vector machines(SVM) based fault diagnosis algorithm.Instantaneous positive symmetrical component is obtained by using theory of symmetrical components,wavelet energy of faulty power switch is gotten by using wavelet packet decomposition.After normalizing these energies,the fault features are obtained.According to the power switch position in the inverter and the characteristics of the output waveform,power switch are grouped,and the power switch faults are isolated by using tri-class SVM.The simulation results show that the accuracy of fault classification is 94.29% using the method proposed in the paper,it also shows that the method is effective.

参考文献/References:

相似文献/References:

[1]王荣杰.基于相似度的电力电子电路故障诊断技术[J].集美大学学报(自然科学版),2010,15(5):372.
[2]王宁,陈景锋.基于油液监测的柴油机磨损故障诊断系统[J].集美大学学报(自然科学版),2012,17(3):212.
 WANG NingCHEN Jing-feng.Diesel Engine Wear Fault Diagnosis System Based on the Oil Monitoring Technology[J].Journal of Jimei University,2012,17(5):212.
[3]王永坚,陈景锋,杨小明.基于油液分析的船舶尾轴承状态监测与故障诊断[J].集美大学学报(自然科学版),2014,19(4):285.
 WANG Yong-jian,CHEN Jing-feng,YANG Xiao-ming.Condition Monitoring and Fault Diagnosis for Ship Stern Bearing Based on Lube Oil Monitoring Analysis[J].Journal of Jimei University,2014,19(5):285.
[4]刘先越,王国玲,俞万能.新能源动力船舶中逆变器下垂控制技术[J].集美大学学报(自然科学版),2016,21(6):447.
 LIU Xian-yue,WANG Guo-ling,YU Wan-neng.Inverter with Droop Control in New Energy Powered Vessel[J].Journal of Jimei University,2016,21(5):447.
[5]罗方芳,陶求华.基于级联极限学习机的基站空调在线监测系统[J].集美大学学报(自然科学版),2018,23(6):475.
 LUO Fangfang,TAO Qiuhua.Air Conditioning Online Monitoring System for Base Station Based on Cascaded Extreme Learning Machines[J].Journal of Jimei University,2018,23(5):475.
[6]韩冉,曾广淼,王荣杰.Sepic变换器的开关管故障诊断[J].集美大学学报(自然科学版),2019,24(4):299.
 HAN Ran,ZENG Guangmiao,WANG Rongjie.Switching Fault Diagnosis of Sepic Converter[J].Journal of Jimei University,2019,24(5):299.
[7]胡欢欢,王永坚,邱晨.HHT和马氏距离融合的船用空压机故障诊断[J].集美大学学报(自然科学版),2020,25(1):50.
 HU HuanhuanWANG Yongjian,QIU Chen.Research of Fault Diagnosis of Ship’s Air Compressor with HHT Marginal Spectrum and Mahalanobis Distance[J].Journal of Jimei University,2020,25(5):50.
[8]曹家瑜,于洪亮,闫锦,等.基于全频谱技术的油膜诱发转子失稳的故障诊断[J].集美大学学报(自然科学版),2020,25(3):202.
 CAO Jiayu,YU Hongliang,YAN Jin,et al.Diagnostic Analysis of Oil Film Induced Rotor Instability Based on Full Spectrum Plot Technology[J].Journal of Jimei University,2020,25(5):202.
[9]苏家懿,崔博文.基于PCA-BLS的逆变器故障诊断[J].集美大学学报(自然科学版),2021,26(2):168.
 SU Jiayi,CUI Bowen.Inverter Fault Diagnosis Based on Broad Learning System[J].Journal of Jimei University,2021,26(5):168.
[10]曾超俊,王荣杰,王亦春,等.一种基于EMD-BLS的三相整流电路故障诊断方法[J].集美大学学报(自然科学版),2021,26(4):357.
 ZENG Chaojun,WANG Rongjie,WANG Yichun,et al.A Fault Diagnosis Method of Three-Phase Rectifier Based on Empirical Mode Decomposition and Broad Learning System[J].Journal of Jimei University,2021,26(5):357.
[11]崔博文.基于小波神经网络的逆变器功率开关故障诊断[J].集美大学学报(自然科学版),2017,22(1):46.
 CUI Bowen.Open-circuit Faults Diagnosis of Power Device inInverter Based on Wavelet and Neural Network[J].Journal of Jimei University,2017,22(5):46.
[12]田维,崔博文.基于小波包和支持向量机的逆变器故障诊断[J].集美大学学报(自然科学版),2019,24(2):125.
 TIAN Wei,CUI Bowen.Faults Diagnosis of Inverter Based on Wavelet Packet Decomposition and SVM[J].Journal of Jimei University,2019,24(5):125.

备注/Memo

备注/Memo:
更新日期/Last Update: 2021-11-24