|本期目录/Table of Contents|

[1]邓雅清,王晓峰,王小利,等.广义Korteweg-de Vries方程的高精度差分格式[J].集美大学学报(自然科学版),2022,27(3):260-266.
 DENG Yaqing,WANG Xiaofeng,WANG Xiaoli,et al.High-order Finite Difference Scheme for the Generalized Korteweg-de Vries Equation[J].Journal of Jimei University,2022,27(3):260-266.
点击复制

广义Korteweg-de Vries方程的高精度差分格式(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第27卷
期数:
2022年第3期
页码:
260-266
栏目:
数理科学与信息工程
出版日期:
2022-05-28

文章信息/Info

Title:
High-order Finite Difference Scheme for the Generalized Korteweg-de Vries Equation
作者:
邓雅清王晓峰王小利何育宇
(闽南师范大学数学与统计学院,福建 漳州 363000)
Author(s):
DENG YaqingWANG XiaofengWANG XiaoliHE Yuyu
(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,China)
关键词:
广义Kortewegde Vries方程高精度守恒性稳定性Von Neumann分析法
Keywords:
GKdV equationhigh-order accuracyconvergencestabilityVon Neumann analysis
分类号:
-
DOI:
-
文献标志码:
A
摘要:
对广义Korteweg-de Vries(generalized Korteweg-de Vries,GKdV)方程的初边值问题进行数值研究,提出一个2层非线性守恒差分格式,该格式的收敛阶为O(τ2+h4)。证明该格式在离散意义下保持原问题质量守恒和能量守恒,分别运用离散能量法和Von Neumann分析法证明该格式的可解性和绝对稳定性。数值实验结果表明,本文格式在时间和空间方向上分别具有2阶和4阶精度,且是质量和能量守恒的。
Abstract:
The initialboundary value problem for the generalized Korteweg-de Vries(GKdV) equation was numerically studied,and a two-level nonlinear conservative difference scheme was proposed,whose convergence order was O(τ2+h4). It was proved that the scheme maintained the mass conservation and energy conservation of the original problem in a discrete sense.The discrete energy method and the Von Neumann analysis method were used to prove the solvability and absolute stability of the scheme.Numerical experimental results showed that the scheme had second and fourth-order accuracy in time and space directions,respectively,and was conserved in mass and energy.

参考文献/References:

相似文献/References:

备注/Memo

备注/Memo:
更新日期/Last Update: 2022-07-12