|本期目录/Table of Contents|

[1]胡明颖,陶胜.PCA显著性检验结合相关分析的图像缩放法[J].集美大学学报(自然科学版),2022,27(4):379-384.
 HU Mingying,TAO Sheng.A Image Scaling Method of PCA Saliency Detection Combined with Correlation Analysis[J].Journal of Jimei University,2022,27(4):379-384.
点击复制

PCA显著性检验结合相关分析的图像缩放法(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第27卷
期数:
2022年第4期
页码:
379-384
栏目:
数理科学与信息工程
出版日期:
2022-07-28

文章信息/Info

Title:
A Image Scaling Method of PCA Saliency Detection Combined with Correlation Analysis
作者:
胡明颖陶胜
(集美大学理学院,福建 厦门 361021)
Author(s):
HU MingyingTAO Sheng
(Science School,Jimei University,Xiamen 361021,China)
关键词:
图像缩放显著图PCA算法相关分析重要值
Keywords:
image scalingsignificance graphPCA algorithmcorrelation analysisimportant value
分类号:
-
DOI:
-
文献标志码:
A
摘要:
针对内容感知图像缩放法的显著图,引入主成分分析(PCA)法检测图像的显著性,并结合相关分析法进行图像缩放。先根据图像每个像素点构造3×3领域,通过PCA算法得到每点的显著得分并定义行、列的显著度;再结合图像行列相关分析得到的行列相近度,给出各行各列的重要值,删除或放大较小重要值的行列实现图像的缩放。实验结果表明,该方法理论简单、运行高效,不仅能够完整地保护重要区域,同时还可以让图像的整体概貌过渡良好。
Abstract:
A new method of saliency detection based on principal component analysis(PCA) and correlation analysis was proposed for the significance graph of contentaware image scaling.According to the 3×3 fields constructed by each pixel of the image,PCA algorithm is used to obtain the significant score for each point and define the salience of rows and columns.In combination with the similarity obtained from correlation analysis of image rows and columns,the important values of each row and column are given,and the rows and columns with small important values are deleted or enlarged to realize image scaling.The experimental results show that the method is simple in theory and efficient in operation,which not only protects the integrity of important areas but also provides a good transition overall.

参考文献/References:

-

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2022-09-10