|本期目录/Table of Contents|

[1]许鲜,陈宁,陈玉鹏.基于深度学习的平面位姿估计算法[J].集美大学学报(自然科学版),2022,27(4):339-347.
 XU Xian,CHEN Ning,CHEN Yupeng.Research on Plane Pose Estimation Algorithm Based on Deep Learning[J].Journal of Jimei University,2022,27(4):339-347.
点击复制

基于深度学习的平面位姿估计算法(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第27卷
期数:
2022年第4期
页码:
339-347
栏目:
船舶与机械工程
出版日期:
2022-07-28

文章信息/Info

Title:
Research on Plane Pose Estimation Algorithm Based on Deep Learning
作者:
许鲜陈宁陈玉鹏
(集美大学海洋装备与机械工程学院,福建 厦门 361021)
Author(s):
XU XianCHEN NingCHEN Yupeng
(School of Marine Equipment and Mechanical Engineering,Jimei University,Xiamen 361021,China)
关键词:
位姿估计平面检测实例分割法线估计
Keywords:
pose estimationplane detectioninstance segmentationnormal estimation
分类号:
-
DOI:
-
文献标志码:
A
摘要:
为了在未知物体三维模型的情况下使用深度学习进行平面位姿估计,采用编码器-解码器网络,从单个RGB图像中检测平面实例分割及法线信息,并利用这些信息进行位姿解算,获得每个平面的实时位姿。实验结果显示,平面召回率为0.625,平面法线召回率为0.414,实时性为18.5 f/s,验证了算法的可行性。
Abstract:
Plane pose estimation is widely used in robotics,augmented reality and other fields,but traditional visual pose estimation algorithms need to be added specific markers to the target,which is less robust and cannot be applied to any scene;pose estimation methods based on deep learning can effectively solve the above-mentioned problems,but the existing method requires a three-dimensional model of a known object.In order to use deep learning for plane pose estimation in the case of unknown object three-dimensional model,the encoder decoder network was used to detect plane instance segmentation and normal information from a single RGB image,which were then employed to perform pose calculation for obtaining each Real-time pose of each plane.The test results show that the plane recall rate is 0.625,the plane normal recall rate is 0.414,and the real-time performance is 18.5 f/s,which verifies the feasibility of the algorithm.

参考文献/References:

-

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2022-09-10