|本期目录/Table of Contents|

[1]叶葱,魏春金,张树文.具有Holling IV功能性反应和非线性收获的随机捕食-食饵模型[J].集美大学学报(自然科学版),2023,28(5):385-396.
 YE Cong,WEI Chunjin,ZHANG Shuwen.A Stochastic Predator-Prey Model with Holling IV Type Functional Response and Nonlinear Harvest[J].Journal of Jimei University,2023,28(5):385-396.
点击复制

具有Holling IV功能性反应和非线性收获的随机捕食-食饵模型(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第28卷
期数:
2023年第5期
页码:
385-396
栏目:
数理科学与信息工程
出版日期:
2023-09-28

文章信息/Info

Title:
A Stochastic Predator-Prey Model with Holling IV Type Functional Response and Nonlinear Harvest
作者:
叶葱魏春金张树文
集美大学理学院,福建 厦门 361021
Author(s):
YE CongWEI ChunjinZHANG Shuwen
School of Science,Jimei University,Xiamen 361021,China
关键词:
捕食-食饵模型非线性收获全局正解的存在唯一性平稳分布周期解
Keywords:
predator-prey modelnonlinear harvestexistence and uniqueness of global positive solutionstationary distributionperiodic solution
分类号:
-
DOI:
-
文献标志码:
A
摘要:
研究具有Holling IV功能性反应和非线性收获的随机捕食食饵模型的动力学。对于自治系统,证明对于任意给定的初始值,系统都存在唯一的全局正解;应用随机微分方程的比较定理,得到系统的平均持续生存与灭绝的充分条件;证明系统存在唯一的平稳分布且具有遍历性。对于非自治系统,获得系统存在非平凡的正周期解的充分条件。最后,通过数值模拟验证了主要结果。捕食-食饵模型;非线性收获;全局正解的存在唯一性;平稳分布;周期解
Abstract:
In this paper,the dynamics of a stochastic predator-prey model with Holling IV type functional response and nonlinear harvest were investigated.For the autonomous systems,it was firstly proved that there was a unique positive global solution starting from the positive initial value.Then,by comparison theorem for stochastic differential equation,sufficient conditions for extinction and persistence in mean were obtained.In addition,it was proved that there was unique stationary distribution which were ergodic.For non-autonomous periodic systems,some sufficient conditions for the existence of non-trivial positive periodic solutions were given.Finally,some numerical simulations were introduced to verify the main results.

参考文献/References:

相似文献/References:

[1]钟小容,王凤筵,张树文,等.捕食者染病的生态流行病系统的稳定性[J].集美大学学报(自然科学版),2014,19(6):459.
 ZHONG Xiao-rong,WANG Feng-yan,ZHANG Shu-wen,et al.The Stability of Eco-epidemiological Model with Infected Predator[J].Journal of Jimei University,2014,19(5):459.
[2]钟小容,王凤筵,张树文.一类Holling-Tanner生态流行病系统的周期解[J].集美大学学报(自然科学版),2015,20(4):305.
 ZHONG Xiao-rong,WANG Feng-yan,ZHANG Shu-wen.Periodicity in a Holling-Tanner Eco-epidemiological System[J].Journal of Jimei University,2015,20(5):305.

备注/Memo

备注/Memo:
更新日期/Last Update: 2024-01-05