|本期目录/Table of Contents|

[1]范金宇,才正,黄朝霞,等.利用SE-GPR模型对甲醇/柴油混合燃料柴油机性能的预测[J].集美大学学报(自然科学版),2024,29(2):152-161.
 FAN Jinyu,CAI Zheng,HUANG Zhaoxia,et al.Performance Prediction of Methanol/Diesel Blended Diesel Engine Based on SE-GPR Model[J].Journal of Jimei University,2024,29(2):152-161.
点击复制

利用SE-GPR模型对甲醇/柴油混合燃料柴油机性能的预测(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第29卷
期数:
2024年第2期
页码:
152-161
栏目:
船舶与机械工程
出版日期:
2024-03-28

文章信息/Info

Title:
Performance Prediction of Methanol/Diesel Blended Diesel Engine Based on SE-GPR Model
作者:
范金宇12才正1黄朝霞3杨晨曦1李品芳12黄加亮12
1.集美大学轮机工程学院,福建 厦门 361021;2.福建省船舶与海洋工程重点实验室,福建 厦门 361021;3.集美大学理学院,福建 厦门 361021
Author(s):
FAN Jinyu12CAI Zheng1HUANG Zhaoxia3YANG Chenxi1LI Pinfang12HUANG Jialiang12
1.School of Marine Engineering,Jimei University,Xiamen 361021,China;2.Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering,Xiamen 361021,China;3.School of Science,Jimei University,Xiamen 361021,China
关键词:
船用柴油机甲醇高斯过程回归平方指数核函数性能预测
Keywords:
marine diesel enginemethanolGaussian process regressionsquared exponential kernelperformance prediction
分类号:
-
DOI:
-
文献标志码:
A
摘要:
为了对柴油机的经济性和排放参数进行高效、准确的预测,根据4190型船用柴油机实验数据与边界参数,建立AVL-BOOST甲醇/柴油混合燃料柴油机仿真模型;利用模型进行仿真实验,并建立甲醇掺混比、废气再循环(exhaust gas recirculation,EGR)率、喷油提前角和进气压力4个控制参数对有效油耗率和NOx排放预测数据集;利用该数据集对5种不同核函数的高斯过程回归(Gaussian process regression,GPR)模型进行训练;最后将最优的平方指数高斯过程回归(squared exponentialGaussian process regression,SEGPR)模型、AVL-BOOST仿真数据和柴油机实验数据进行对比。结果表明:在数据量为180组时,SE-GPR模型对有效油耗率和NOx排放均取得拟合关联度99%以上,均方根误差(root mean square error,RMSE)分别为1.859,0.344 5,平均绝对误差(mean absolute error,MAE)分别为0.954,0.248 9;并且,相较于AVL-BOOST仿真实验,SE-GPR模型对实验数据具有更好的拟合性。
Abstract:
In order to efficiently and accurately predict diesel engine economy and emission parameters,based on the experimental data of the 4190 type marine diesel engine and boundary parameters,an AVL-BOOST simulation model for diesel engines utilizing methanol/diesel blended fuels was established,and a dataset for predicting effective fuel consumption and NOx emissions was created by using this model,incorporating four operational parameters:methanol blending ratio,exhaust gas recirculation (EGR) rate,injection advance angle,and intake pressure.The dataset was employed to train Gaussian process regression (GPR) models with five different kernel functions.Finally,the bestperforming squared exponential Gaussian process regression (SE-GPR) model was compared with AVL-BOOST simulation data and diesel engine experimental data.The results showed that the SE-GPR model achieves a correlation of over 99% for both effective fuel consumption and NOx emissions when the dataset contains 180 data sets,with root mean square error (RMSE) values of 1.859,0.344 5,and mean absolute error (MAE) values of 0.954,0.248 9.Moreover,compared to AVL-BOOST simulation experiments,the SE-GPR model exhibits a better fit to the experimental data.

参考文献/References:

相似文献/References:

[1]饶晓丹.G32型柴油机活塞顶晶粒度的船检规范探索[J].集美大学学报(自然科学版),2013,18(5):365.
 RAO Xiao-dan.Study on Piston Head Grain Size Inspection of G32 Marin Diesel[J].Journal of Jimei University,2013,18(2):365.
[2]伍斯杰,王永坚,杨小明,等.船舶柴油机燃油粘度控制系统的仿真[J].集美大学学报(自然科学版),2013,18(5):354.
 WU Si-jie,WANG Yong-jian,YANG Xiao-ming,et al.Simulation Study of the Fuel Oil Viscosity Control System for Marine Diesel Engine[J].Journal of Jimei University,2013,18(2):354.
[3]李斯钦,杨国豪,黄加亮.大型低速船用柴油机燃油共轨系统建模[J].集美大学学报(自然科学版),2014,19(1):25.
 LI Si-qin,YANG Guo-hao,HUANG Jia-liang.Research on Modeling of Fuel Common Rail System of Large-scale Low-speed Marine Diesel Engine[J].Journal of Jimei University,2014,19(2):25.
[4]王永坚,吴怡婷,魏旻,等.VR与云技术融合的船用柴油机诊断拆检系统[J].集美大学学报(自然科学版),2022,27(5):431.
 WANG Yongjian,WU Yiting,WEI Min,et al.Research and Development for Fault Diagnosis and Overhaul Operation System of Marine Diesel Engine by VR and Cloud Techniques[J].Journal of Jimei University,2022,27(2):431.
[5]宣熔,张飞飞,陈坚,等.喷油提前角对双燃料柴油机燃烧和排放的影响[J].集美大学学报(自然科学版),2021,26(3):240.
 XUAN Rong,ZHANG Feifei,CHEN Jian,et al.Effect of Fuel Injection Advance Angle on Combustions and Emissions of Methanol Dual Powered Fuel Diesel Engines[J].Journal of Jimei University,2021,26(2):240.

备注/Memo

备注/Memo:
更新日期/Last Update: 2024-06-05