[1]杨远奇,蔡岱立,谢泽凌,等.基于动态卷积的标签不确定性自学习预测分配算法的面部表情识别[J].集美大学学报(自然科学版),2025,(2):186-197.
YANG Yuanqi,CAI Daili,XIE Zeling,et al.Facial Expression Recognition Based on Self-Learning Label Prediction and Distribution Algorithm Based on Dynamic Convolutional for Label Uncertainty[J].Journal of Jimei University,2025,(2):186-197.
点击复制
基于动态卷积的标签不确定性自学习预测分配算法的面部表情识别(PDF)
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
- 期数:
-
2025年第2期
- 页码:
-
186-197
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2025-03-28
文章信息/Info
- Title:
-
Facial Expression Recognition Based on Self-Learning Label Prediction and Distribution Algorithm Based on Dynamic Convolutional for Label Uncertainty
- 作者:
-
杨远奇1; 蔡岱立2; 谢泽凌1; 3; 江恩杰1
-
1. 集美大学诚毅学院信息工程系,福建 厦门 361021;2. 深圳市浩瀚卓越科技有限公司,广东 深圳 518071;3. 自然资源部宁德海洋中心, 福建 宁德 352100
- Author(s):
-
YANG Yuanqi1; CAI Daili2; XIE Zeling1; 3; JIANG Enjie1
-
1.Information Engineering,Chengyi College,Jimei University, Xiamen 361021, China;2.Shenzhen Hohem Technology Co.,Ltd.,Shenzhen 518071,China;3.Ningde Marine Center, MNR,Ningde 352100, China
-
- 关键词:
-
面部表情识别; 标签不确定性自学习预测分配算法; 动态卷积; 抗噪神经网络
- Keywords:
-
dynamic convolution; anti-noise neural network
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
A
- 摘要:
-
为解决在表情识别领域中数据集受到噪声、标注模糊、微表情等不确定性因素干扰的问题,提出了一种标签不确定性自学习预测分配算法。该算法包含三个核心模块:1)自注意力加权模块采用动态卷积实现精细的像素级注意力机制,有效降低计算负担;2)正则化排序模块通过样本权重排序和重新分配,优化了模型对不确定样本的处理;3)标签再分配模块对低权重样本进行标签校正,提高了整体预测精度。经过实验验证,该算法有效抑制了标签不确定性的影响,在RAFDB和MMAFEDB等公开数据集上展现了卓越性能。
- Abstract:
-
To solve the problem of uncertain factors such as noise, fuzzy labeling, and micro expressions affecting the dataset in the field of facial expression recognition, a label uncertainty self-learning prediction allocation algorithm is proposed.The algorithm consists of three core modules: 1) A self-attention weighting module employing dynamic convolution to achieve fine-grained pixel-level attention mechanism, effectively reducing computational overhead; 2) A regularized ranking module that optimizes the model’s handling of uncertain samples through sample weight reranking and reallocation; 3) A label reassignment module that corrects labels for low-weight samples, thereby improving overall prediction accuracy. Experimental validation demonstrates the algorithm’s efficacy in mitigating the impact of label uncertainty, exhibiting outstanding performance on publicly available datasets such as RAF-DB and MMAFEDB.Keywords: facial expression recognition; label uncertainty self-learning prediction allocation
参考文献/References:
相似文献/References:
[1]张东晓,陈彦翔.一种面向移动端的浅层CNN表情识别[J].集美大学学报(自然科学版),2021,26(2):129.
ZHANG Dongxiao,CHEN Yanxiang.Mobile-Oriented Facial Expression Recognition Based on Shallow CNN[J].Journal of Jimei University,2021,26(2):129.
更新日期/Last Update:
2025-04-25