|本期目录/Table of Contents|

[1]付天浩,王晓峰,刘佳垚,等.RLW方程六阶空间精度的线性守恒差分格式[J].集美大学学报(自然科学版),2025,(4):395-402.
 FU Tianhao,WANG Xiaofeng,LIU Jiayao,et al.A Linear Conservative Difference Scheme with Six-Order Spatial Accuracy for the RLW Equation[J].Journal of Jimei University,2025,(4):395-402.
点击复制

RLW方程六阶空间精度的线性守恒差分格式(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
期数:
2025年第4期
页码:
395-402
栏目:
数理科学与信息工程
出版日期:
2025-07-28

文章信息/Info

Title:
A Linear Conservative Difference Scheme with Six-Order Spatial Accuracy for the RLW Equation
作者:
付天浩12王晓峰12刘佳垚12付瑶12
1.闽南师范大学数学与统计学院, 福建 漳州 363000;2.福建省粒计算及其重点实验室, 福建 漳州 363000
Author(s):
FU Tianhao12WANG Xiaofeng12LIU Jiayao12FU Yao12
1.School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,China;2.Fujian Key Laboratory of Granular Computing and Applications,Zhangzhou 363000,China
关键词:
正则长波(RLW)方程线性差分格式六阶精度收敛性稳定性
Keywords:
regularised long wave (RLW) equationlinear difference schemesixth-order accuracyconvergencestability
分类号:
-
DOI:
-
文献标志码:
A
摘要:
对正则长波(RLW)方程建立一个具有高精度的三层隐式差分格式,该格式具有二阶时间精度和六阶空间精度,且在离散意义下能够合理地模拟原问题的质量守恒和能量守恒。 采用离散能量法和Von Neumann分析法证明了所构造数值格式的收敛性和稳定性。数值算例验证了所建格式的有效性,且该格式明显优于其他数值格式。
Abstract:
A three-level implicit difference scheme with high-order spatial accuracy is proposed for the regularised long wave (RLW) equation.The proposed scheme has second-order temporal accuracy and sixth-order spatial accuracy.Also,the scheme can reasonably simulate the mass conservation and energy conservation of the original problem in discrete sense.The convergence and stability of the proposed numerical scheme are proved using the discrete energy method and Von Neumann analysis.Numerical example is given to verify the validity of the proposed scheme and the scheme is obviously better than other numerical schemes.

参考文献/References:

相似文献/References:

备注/Memo

备注/Memo:
更新日期/Last Update: 2025-09-07