|本期目录/Table of Contents|

[1]谢清梅,詹华税.带有吸附项的边界扩散退化抛物方程解的性质[J].集美大学学报(自然科学版),2012,17(1):71-74.
 XIE Qing-meiZHAN Hua-shui.Properties of the Boundary Degenerate ParabolicEquation with Adsorption Item[J].Journal of Jimei University,2012,17(1):71-74.
点击复制

带有吸附项的边界扩散退化抛物方程解的性质(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第17卷
期数:
2012年第1期
页码:
71-74
栏目:
数理科学与信息工程
出版日期:
2012-01-25

文章信息/Info

Title:
Properties of the Boundary Degenerate ParabolicEquation with Adsorption Item
作者:
谢清梅詹华税
(集美大学理学院,福建 厦门 361021)
Author(s):
XIE Qing-meiZHAN Hua-shui
(School of Science,Jimei University,Xiamen 361021,China)
关键词:
边界退化扩散方程存在性唯一性
Keywords:
boundary degeneracydiffusion equationexistenceuniqueness
分类号:
-
DOI:
-
文献标志码:
-
摘要:
       研究带有吸附项的边界扩散退化抛物方程?u/?t= div(dα|?u|p?2?u) ? uq (x, t) ∈ QT = Ω × (0, T),其中:Ω?RN是一个边界适当光滑的有界区域;d(x)=dist(x,Ω).验证了当α≥p-1时,该方程存在只与初值条件有关的解,而且是唯一的;当0<α
Abstract:
The boundary degenerate parabolic equation with adsorption item?u/?t= div(dα|?u|p?2?u) ? uq (x, t) ∈ QT = Ω × (0, T)was studied,where Ω?RN was a bounded domain with appropriately smooth boundary ?Ω,d(x)=dist(x,Ω),and it was proved that if α≥p-1,the equation was admitted a unique solution subject only to a given initial datum without any boundary value condition.While if 0<α<p-1,for a given initial datum,the equation admitted different solutions for different boundary value conditions

参考文献/References:

-

相似文献/References:

[1]许文彬.p-拉普拉斯抛物型方程解的稳定性[J].集美大学学报(自然科学版),2016,21(6):471.
 XU Wen-bin.On the Stability of a Parabolic Equation Related to the p-Laplacian[J].Journal of Jimei University,2016,21(1):471.
[2]周臻,詹华税.一类非线性退化抛物方程的解[J].集美大学学报(自然科学版),2017,22(6):70.
 ZHOU Zhen,ZHAN Huashui.Solutions of a Nonlinear Degenerate Parabolic Equation[J].Journal of Jimei University,2017,22(1):70.
[3]谢清梅,詹华税.边界退化的奇异扩散方程解的正则性[J].集美大学学报(自然科学版),2011,16(5):389.
 XIE Qing-mei,ZHAN Hua-shui.The Regular Properties of the Singular DiffusionEquation with Boundary Degeneracy[J].Journal of Jimei University,2011,16(1):389.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2014-06-28