|本期目录/Table of Contents|

[1]谢莎莎,黄振坤.Wilson-Cowan神经网络的概周期解及其稳定性[J].集美大学学报(自然科学版),2013,18(2):146-150.
 XIE Sha-sha,HUANG Zhen -kun.The Existence and Stability of Almost Periodic Solutions for WCNNs[J].Journal of Jimei University,2013,18(2):146-150.
点击复制

Wilson-Cowan神经网络的概周期解及其稳定性(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第18卷
期数:
2013年第2期
页码:
146-150
栏目:
数理科学与信息工程
出版日期:
2013-03-25

文章信息/Info

Title:
The Existence and Stability of Almost Periodic Solutions for WCNNs
作者:
谢莎莎黄振坤
(集美大学理学院,福建 厦门 361021 )
Author(s):
XIE Sha-shaHUANG Zhen -kun
(School of Science,Jimei University,Xiamen 361021,China )
关键词:
Wilson-Cowan神经网络概周期解指数型稳定性不动点定理
Keywords:
Wilson-Cowan neural networksalmost periodic solutionexponential stabilityfixed point theorem
分类号:
-
DOI:
-
文献标志码:
-
摘要:
        对具有概周期系数的Wilson-Cowan神经网络进行了讨论,利用压缩不动点定理与Lyapunov泛函方法,得到了此类神经网络概周期解的存在性、唯一性与指数型稳定性的充分条件
Abstract:
Wilson-Cowan neural networks(WCNNs)with almost periodic coefficients were discussed.By using the fixed point theorem and Lyapunov functional technique,sufficient condition guaranteeing was obtained that there existed and unique almost periodic solution of WCNNs which was exponentially stable.

参考文献/References:

-

相似文献/References:

[1]方聪娜,王全义,谢惠琴,等.具有有限时滞中立型泛函微分方程的概周期解[J].集美大学学报(自然科学版),2010,15(6):71.[doi:2010/12/30 0:00:00]
[2]方聪娜,王全义,谢惠琴.具有有限时滞中立型泛函微分方程的概周期解[J].集美大学学报(自然科学版),2010,15(6):471.
[3]方聪娜.非算子型泛函微分方程概周期解的稳定性[J].集美大学学报(自然科学版),2012,17(4):297.
 FANG Cong-na.Stability of Almost Periodic Solutions to Non-operator-based Functional Differential Equations[J].Journal of Jimei University,2012,17(2):297.
[4]方聪娜.具有时滞的复值微分系统的概周期解[J].集美大学学报(自然科学版),2018,23(3):232.
 FANG Congna.The Almost Periodic Solution of Complex-valued Differential Systems with Time Delay[J].Journal of Jimei University,2018,23(2):232.
[5]方聪娜.一类中立型Cohen-Grossberg神经网络的概周期解[J].集美大学学报(自然科学版),2021,26(2):104.
 FANG Congna.The Almost Periodic Solution for a Class of Neutral Cohen-Grossberg Neural Networks[J].Journal of Jimei University,2021,26(2):104.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2014-06-28