|本期目录/Table of Contents|

[1]苏家懿,崔博文.基于PCA-BLS的逆变器故障诊断[J].集美大学学报(自然科学版),2021,26(2):168-173.
 SU Jiayi,CUI Bowen.Inverter Fault Diagnosis Based on Broad Learning System[J].Journal of Jimei University,2021,26(2):168-173.
点击复制

基于PCA-BLS的逆变器故障诊断(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第26卷
期数:
2021年第2期
页码:
168-173
栏目:
数理科学与信息工程
出版日期:
2021-03-28

文章信息/Info

Title:
Inverter Fault Diagnosis Based on Broad Learning System
作者:
苏家懿崔博文
(集美大学轮机工程学院,福建 厦门 361021)
Author(s):
SU JiayiCUI Bowen
(School of Marine Engineering,Jimei University,Xiamen 361021,China)
关键词:
逆变器故障主成分分析法宽度学习神经网络故障诊断
Keywords:
inverter faultprincipal component analysisbroad learning systemneural networkfault diagnosi
分类号:
-
DOI:
-
文献标志码:
-
摘要:
为了确保电气设备的安全可靠运行,提出基于主成分分析法与宽度学习系统的逆变器故障诊断方法。利用主成分分析法对逆变器输出的电流信号进行处理,提取信号特征;构建宽度学习系统,并编写不同故障模式下的故障编码;利用不同故障模式下的信号特征对宽度学习系统进行训练,利用网络输出编码实现故障分类。仿真结果表明,该研究方法在诊断准确率及训练时间方面优于传统的神经网络故障诊断方法。
Abstract:
In order to ensure the safety and reliability of the electrical equipment during operating,the paper proposes a new inverter fault diagnosis method based on principal component analysis (PCA) and broad learning system (BLS).Firstly,the current signal of the inverter was processed by using PCA method,and the signal characteristics were extracted.Secondly,the BLS was constructed and the fault coding under different fault modes were obtained.Finally,the BLS network was trained by using the signal characteristics with different fault modes,and the fault classification was realized by using the network output coding.The simulation results show that the method proposed in the paper is superior to the traditional neural network in terms of diagnosis accuracy and training time.

参考文献/References:

-

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2021-05-17