|本期目录/Table of Contents|

[1]王瀚,周海峰,郑东强,等.基于WPD-PSO算法的整流电路故障诊断[J].集美大学学报(自然科学版),2022,27(3):253-259.
 WANG Han,ZHOU Haifeng,ZHENG Dongqiang,et al.Fault Diagnosis of Rectifier Circuit Based on WPD-PSO Algorithm[J].Journal of Jimei University,2022,27(3):253-259.
点击复制

基于WPD-PSO算法的整流电路故障诊断(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第27卷
期数:
2022年第3期
页码:
253-259
栏目:
船舶与机械工程
出版日期:
2022-05-28

文章信息/Info

Title:
Fault Diagnosis of Rectifier Circuit Based on WPD-PSO Algorithm
作者:
王瀚12周海峰12郑东强3林忠华3张兴杰4关天敏5
(1.集美大学轮机工程学院,福建 厦门 361021;2.福建省船舶与海洋工程重点实验室,福建 厦门 361021;3.集美大学海洋装备与机械工程学院,福建 厦门 361021;4.集美大学航海学院,福建 厦门 361021;5.集美大学海洋信息工程学院,福建 厦门 361021)
Author(s):
WANG Han12ZHOU Haifeng12ZHENG Dongqiang3LIN Zhonghua3ZHANG Xingjie4GUAN Tianmin5
(1.School of Marine Engineering,Jimei University, Xiamen 361021, China;2.Fujian Province Key Laboratory of Naval Architecture and Ocean Engineering,Xiamen 361021,China;3.School of Marine Equipment and Mechanical Engineering,Jimei University,Xiamen 361021, China;4.Navigation College, Jimei University,Xiamen 361021, China;5.School of Marine Information Engineering, Jimei University, Xiamen 361021, China)
关键词:
电力电子电路故障诊断小波包分解粒子群算法平滑因子概率神经网络
Keywords:
power electronic circuitfault diagnosiswavelet packet decompositionparticle swarm algorithmsmoothing factorprobabilistic neural network
分类号:
-
DOI:
-
文献标志码:
A
摘要:
针对电力电子电路故障类型多、诊断正确率低的问题,提出基于小波包分解和粒子群算法优化概率神经网络的方法。建立三相桥式全控整流电路仿真模型,利用小波包分解技术对故障电压信号进行三层小波包分解与重构,提取特征值,并对数据进行归一化处理;用粒子群算法优化概率神经网络寻找合适的平滑因子,对数据进行训练和诊断;将该方法与未优化的概率神经网络作对比。仿真结果表明,该方法在训练效果和诊断正确率上都要优于未优化的概率神经网络。
Abstract:
Aiming at the problem of multiple fault types and low diagnostic accuracy of power electronic circuits,a method of optimizing probabilistic neural network based on wavelet packet decomposition and particle swarm optimization was proposed.Firstly,the simulation model of three-phase bridge rectifier circuit was established,and the fault voltage signal was decomposed and reconstructed by three-layer wavelet packet decomposition technique,and the characteristic values were extracted and normalized.Then PSO was used to optimize the probabilistic neural network to find the appropriate smoothing factor,and the data was trained and diagnosed.Finally,compared with the unoptimized probabilistic neural network,the simulation results show that the method is superior to the unoptimized probabilistic neural network on both training effect and diagnosis accuracy.

参考文献/References:

相似文献/References:

[1]王宁,陈景锋.基于油液监测的柴油机磨损故障诊断系统[J].集美大学学报(自然科学版),2012,17(3):212.
 WANG NingCHEN Jing-feng.Diesel Engine Wear Fault Diagnosis System Based on the Oil Monitoring Technology[J].Journal of Jimei University,2012,17(3):212.
[2]王永坚,陈景锋,杨小明.基于油液分析的船舶尾轴承状态监测与故障诊断[J].集美大学学报(自然科学版),2014,19(4):285.
 WANG Yong-jian,CHEN Jing-feng,YANG Xiao-ming.Condition Monitoring and Fault Diagnosis for Ship Stern Bearing Based on Lube Oil Monitoring Analysis[J].Journal of Jimei University,2014,19(3):285.
[3]崔博文.基于小波神经网络的逆变器功率开关故障诊断[J].集美大学学报(自然科学版),2017,22(1):46.
 CUI Bowen.Open-circuit Faults Diagnosis of Power Device inInverter Based on Wavelet and Neural Network[J].Journal of Jimei University,2017,22(3):46.
[4]罗方芳,陶求华.基于级联极限学习机的基站空调在线监测系统[J].集美大学学报(自然科学版),2018,23(6):475.
 LUO Fangfang,TAO Qiuhua.Air Conditioning Online Monitoring System for Base Station Based on Cascaded Extreme Learning Machines[J].Journal of Jimei University,2018,23(3):475.
[5]田维,崔博文.基于小波包和支持向量机的逆变器故障诊断[J].集美大学学报(自然科学版),2019,24(2):125.
 TIAN Wei,CUI Bowen.Faults Diagnosis of Inverter Based on Wavelet Packet Decomposition and SVM[J].Journal of Jimei University,2019,24(3):125.
[6]韩冉,曾广淼,王荣杰.Sepic变换器的开关管故障诊断[J].集美大学学报(自然科学版),2019,24(4):299.
 HAN Ran,ZENG Guangmiao,WANG Rongjie.Switching Fault Diagnosis of Sepic Converter[J].Journal of Jimei University,2019,24(3):299.
[7]胡欢欢,王永坚,邱晨.HHT和马氏距离融合的船用空压机故障诊断[J].集美大学学报(自然科学版),2020,25(1):50.
 HU HuanhuanWANG Yongjian,QIU Chen.Research of Fault Diagnosis of Ship’s Air Compressor with HHT Marginal Spectrum and Mahalanobis Distance[J].Journal of Jimei University,2020,25(3):50.
[8]曹家瑜,于洪亮,闫锦,等.基于全频谱技术的油膜诱发转子失稳的故障诊断[J].集美大学学报(自然科学版),2020,25(3):202.
 CAO Jiayu,YU Hongliang,YAN Jin,et al.Diagnostic Analysis of Oil Film Induced Rotor Instability Based on Full Spectrum Plot Technology[J].Journal of Jimei University,2020,25(3):202.
[9]苏家懿,崔博文.基于PCA-BLS的逆变器故障诊断[J].集美大学学报(自然科学版),2021,26(2):168.
 SU Jiayi,CUI Bowen.Inverter Fault Diagnosis Based on Broad Learning System[J].Journal of Jimei University,2021,26(3):168.
[10]曾超俊,王荣杰,王亦春,等.一种基于EMD-BLS的三相整流电路故障诊断方法[J].集美大学学报(自然科学版),2021,26(4):357.
 ZENG Chaojun,WANG Rongjie,WANG Yichun,et al.A Fault Diagnosis Method of Three-Phase Rectifier Based on Empirical Mode Decomposition and Broad Learning System[J].Journal of Jimei University,2021,26(3):357.
[11]王荣杰.基于相似度的电力电子电路故障诊断技术[J].集美大学学报(自然科学版),2010,15(5):372.

备注/Memo

备注/Memo:
更新日期/Last Update: 2022-07-12