[1]宋策,尹勇,王鹏.基于改进YOLOv5的船舶目标检测算法[J].集美大学学报(自然科学版),2023,28(2):136-141.
SONG Ce,YIN Yong,WANG Peng.Ship Target Detection Algorithm Based on Improved YOLOv5[J].Journal of Jimei University,2023,28(2):136-141.
点击复制
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第28卷
- 期数:
-
2023年第2期
- 页码:
-
136-141
- 栏目:
-
航海技术与物流工程
- 出版日期:
-
2023-03-28
文章信息/Info
- Title:
-
Ship Target Detection Algorithm Based on Improved YOLOv5
- 作者:
-
宋策; 尹勇; 王鹏
-
(大连海事大学航海动态仿真和控制交通行业重点实验室,辽宁大连,116026)
- Author(s):
-
SONG Ce; YIN Yong; WANG Peng
-
(Key Laboratory of Marine Simulation & Control for Transportation Industry, Dalian Maritime University,Dalian 116026,China)
-
- 关键词:
-
船舶目标检测; 视频感知; 卷积神经网络; YOLO; 边界框选取
- Keywords:
-
ship target detection; video sencing; convolutional neural network; YOLO; bounding box selection
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
A
- 摘要:
-
针对船载视频感知系统存在的船舶目标检测精度不高和检测速度慢的问题,提出一种改进的YOLOv5船舶目标检测方法。利用SENet以及Confluence边界框选取抑制技术对Backbone和边界框的选取方法进行改进,以提高目标检测精度。通过SeaShips公开数据集对改进的算法进行训练及测试。结果显示:算法的召回率为98.3%;精确率可达88.5%;检测速度达到0.019 s/image。表明改进算法具有较高的检测精度,检测效率可以达到实时。
- Abstract:
-
Aiming at the problems of low detection accuracy and slow detection speed in shipborne video sensing systems, an improved YOLOv5 ship target detection method is proposed in this paper. In this method, SENet and Confluence bounding box selection suppression technology is used to improve the Backbone and bounding box selection method, so as to improve the target detection accuracy. By using Seaships public datasets to train and test the improved algorithm, the recall rate of the proposed algorithm is 98.3%, the precision is up to 88.5%, and the detection speed is up to 0.019 s/image. Experimental results show that the improved algorithm proposed in this paper has high detection accuracy and real-time detection efficiency.
参考文献/References:
相似文献/References:
更新日期/Last Update:
2023-07-13