[1]韩冉,曾广淼,王荣杰.Sepic变换器的开关管故障诊断[J].集美大学学报(自然版),2019,24(4):299-305.
 HAN Ran,ZENG Guangmiao,WANG Rongjie.Switching Fault Diagnosis of Sepic Converter[J].Journal of Jimei University,2019,24(4):299-305.
点击复制

Sepic变换器的开关管故障诊断()
分享到:

《集美大学学报(自然版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第24卷
期数:
2019年第4期
页码:
299-305
栏目:
船舶与机械工程
出版日期:
2019-07-28

文章信息/Info

Title:
Switching Fault Diagnosis of Sepic Converter
作者:
韩冉1曾广淼1王荣杰12
(1.集美大学轮机工程学院,福建 厦门 361021;2.福建省船舶与海洋工程重点实验室,福建 厦门 361021)
Author(s):
HAN Ran1ZENG Guangmiao1WANG Rongjie12
(1.School of Marine Engineering,Jimei University,Xiamen 361021,China;2.Fujian Province Key Laboratory of Naval Architecture and Marine Engineering,Xiamen 361021,China)
关键词:
Sepic变换器故障诊断逻辑电路开关管电流负载电压
Keywords:
Sepic converterfault diagnosislogic circuitswitching currentload volta
文献标志码:
A
摘要:
针对Sepic变换器故障状态的特点,首先分析负载电压和开关管电流在不同工作状态下所表现的特征,然后构造一种基于开关管电流和负载电压之间逻辑关系的开关管故障诊断方法,最后进行了开关管短路和开路以及续流二极管开路和短路的仿真实验。仿真结果表明,该故障诊断方法可行,并具有较高诊断准确率。
Abstract:
According to the characteristics of the fault state of the Sepic converter,firstly,the characteristics of the load voltage and the switching tube current under different working conditions are analyzed,and then a fault diagnosis method based on the logic relationship between the switching current and the load voltage is constructed.Finally,Simulation experiments were carried out on the short circuit of the switch,the open circuit of the switch,the open diode,and the open diode.The simulation results show the feasibility of the fault diagnosis method,and it has higher diagnostic accuracy.

相似文献/References:

[1]王荣杰.基于相似度的电力电子电路故障诊断技术[J].集美大学学报(自然版),2010,15(5):372.
[2]王宁,陈景锋.基于油液监测的柴油机磨损故障诊断系统[J].集美大学学报(自然版),2012,17(3):212.
 WANG NingCHEN Jing-feng.Diesel Engine Wear Fault Diagnosis System Based on the Oil Monitoring Technology[J].Journal of Jimei University,2012,17(4):212.
[3]王永坚,陈景锋,杨小明.基于油液分析的船舶尾轴承状态监测与故障诊断[J].集美大学学报(自然版),2014,19(4):285.
 WANG Yong-jian,CHEN Jing-feng,YANG Xiao-ming.Condition Monitoring and Fault Diagnosis for Ship Stern Bearing Based on Lube Oil Monitoring Analysis[J].Journal of Jimei University,2014,19(4):285.
[4]崔博文.基于小波神经网络的逆变器功率开关故障诊断[J].集美大学学报(自然版),2017,22(1):46.
 CUI Bowen.Open-circuit Faults Diagnosis of Power Device inInverter Based on Wavelet and Neural Network[J].Journal of Jimei University,2017,22(4):46.
[5]罗方芳,陶求华.基于级联极限学习机的基站空调在线监测系统[J].集美大学学报(自然版),2018,23(6):475.
 LUO Fangfang,TAO Qiuhua.Air Conditioning Online Monitoring System for Base Station Based on Cascaded Extreme Learning Machines[J].Journal of Jimei University,2018,23(4):475.
[6]田维,崔博文.基于小波包和支持向量机的逆变器故障诊断[J].集美大学学报(自然版),2019,24(2):125.
 TIAN Wei,CUI Bowen.Faults Diagnosis of Inverter Based on Wavelet Packet Decomposition and SVM[J].Journal of Jimei University,2019,24(4):125.

更新日期/Last Update: 2019-08-31