[1]徐丽琼.5连通图的分裂和可收缩边[J].集美大学学报(自然科学版),2010,15(5):384-388.
XU Li-qiong.Splitting and Contractible Edges in 5-connected Graphs[J].Journal of Jimei University,2010,15(5):384-388.
点击复制
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第15卷
- 期数:
-
2010年第5期
- 页码:
-
384-388
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2010-09-25
文章信息/Info
- Title:
-
Splitting and Contractible Edges in 5-connected Graphs
- 作者:
-
徐丽琼
-
(集美大学理学院,福建 厦门 361021)
- Author(s):
-
XU Li-qiong
-
(School of Science,Jimei University,Xiamen 361021,China)
-
- 关键词:
-
k可收缩边; 分裂; 5连通图
- Keywords:
-
contractible edge; splitting; 5-connected graph
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
-
- 摘要:
-
]引入5连通图中度为5的顶点的分裂,利用分裂和收缩的运算对某类5连通图进行归纳,证明了对于阶至少为7的5连通图G,当G的任一断片的阶不等于2,且对G的任一5度顶点z,G[NG(z)]中含子图(K2∪2K1)+K1,则对G的任意顶点x,下列断言之一成立:1)x关联一条可收缩边;2)在NG(x)中存在一个5度顶点y关联一条可收缩边;3)在NG(x)中存在一个5度顶点y,使得对y作某一个分裂运算所得的图是5连通的
- Abstract:
-
The splitting operation at a vertex of degree five in a 5-connected graph was defined,and proved that,for a 5-connected graph G with order at least seven,if the order of any end in G was not equal to 2,and for any vertex z of degree five, G[NG(z)]contained a subgraph(K2∪2K1)+K1,then,for any x in V(G),one of the followings held:1)A contractible edge was incident with x;2)There existed a vertex y of degree five in NG(x) such that a contractible edge was incident with y;3)There existed a vertex y of degree five in NG(x) such that after some splitting at y in G,the resulting graph was 5-connected
参考文献/References:
-
相似文献/References:
更新日期/Last Update:
2014-06-28