|本期目录/Table of Contents|

[1]林妹娇,陈水利.一种新的TS模型辨识算法[J].集美大学学报(自然科学版),2013,18(3):219-224.
 LIN Mei-jiao,CHEN Shui-li.A Novel TS Model Identification Algorithm[J].Journal of Jimei University,2013,18(3):219-224.
点击复制

一种新的TS模型辨识算法(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第18卷
期数:
2013年第3期
页码:
219-224
栏目:
数理科学与信息工程
出版日期:
2013-05-25

文章信息/Info

Title:
A Novel TS Model Identification Algorithm
作者:
林妹娇1陈水利2
(1.福州大学数学与计算机科学学院,福建 福州 350108;2. 集美大学理学院,福建 厦门 361021 )
Author(s):
LIN Mei-jiao1CHEN Shui-li2
(1.College of Mathematics and Computer ScienceFuzhou UniversityFuzhou 350108China2.School of ScienceJimei University Xiamen 361021China)
关键词:
TS模型辨识MCR算法改进的GK聚类算法自适应粒子群优化算法
Keywords:
TakagiSugeno model identification Mountain C-Regression methodMCRmodified GK algorithmAdaptive Particle Swarm OptimizationAPSO
分类号:
-
DOI:
-
文献标志码:
-
摘要:
    提出一种新的TS模型辨识算法.该算法思想:首先采用MCR算法(Mountain CRegression method)自动确定聚类数目和初始聚类中心,然后采用改进的GK(GustafonKessl)聚类算法得到最优的划分矩阵,再根据最优划分矩阵计算系统前件参数的最优值,最后用自适应粒子群优化算法(Adaptive Particle Swarm Optimization,APSO)对后件参数进行优化.此辨识算法能够用较少的规则数描述给定的未知系统,并且容易实现.仿真实验表明该算法能够实现非线性系统的辨识,并且可获得相对高的精度
Abstract:
In this paper,a novel TS model identification algorithm is proposed.The identification algorithm is on the base of the following ideas :Firstly,the Mountain C-Regression method (MCR) is used to automatically identify the number of clusters and initial cluster center.Secondly,the modified Gustafson-Kessl (GK) algorithm is used to obtain an optimal input-output space fuzzy partition matrix which provids the values of premise parameters.Finally,Adaptive Particle Swarm Optimization (APSO) algorithm is adopted to precisely adjust consequent parameters.It can express a given unknown system with a small number of fuzzy rules and is easy to implement.The simulation results show the proposed algorithm realizes the identification of the nonlinear system with relative high accuracy.

参考文献/References:

-

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2014-06-28