[1]林妹娇,陈水利.一种新的TS模型辨识算法[J].集美大学学报(自然科学版),2013,18(3):219-224.
LIN Mei-jiao,CHEN Shui-li.A Novel TS Model Identification Algorithm[J].Journal of Jimei University,2013,18(3):219-224.
点击复制
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第18卷
- 期数:
-
2013年第3期
- 页码:
-
219-224
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2013-05-25
文章信息/Info
- Title:
-
A Novel TS Model Identification Algorithm
- 作者:
-
林妹娇1; 陈水利2
-
(1.福州大学数学与计算机科学学院,福建 福州 350108;2. 集美大学理学院,福建 厦门 361021 )
- Author(s):
-
LIN Mei-jiao1; CHEN Shui-li2
-
(1.College of Mathematics and Computer ScienceFuzhou UniversityFuzhou 350108China2.School of ScienceJimei University Xiamen 361021China)
-
- 关键词:
-
TS模型辨识; MCR算法; 改进的GK聚类算法; 自适应粒子群优化算法
- Keywords:
-
TakagiSugeno model identification ; Mountain C-Regression method; MCR; modified GK algorithm; Adaptive Particle Swarm Optimization; APSO
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
-
- 摘要:
-
提出一种新的TS模型辨识算法.该算法思想:首先采用MCR算法(Mountain CRegression method)自动确定聚类数目和初始聚类中心,然后采用改进的GK(GustafonKessl)聚类算法得到最优的划分矩阵,再根据最优划分矩阵计算系统前件参数的最优值,最后用自适应粒子群优化算法(Adaptive Particle Swarm Optimization,APSO)对后件参数进行优化.此辨识算法能够用较少的规则数描述给定的未知系统,并且容易实现.仿真实验表明该算法能够实现非线性系统的辨识,并且可获得相对高的精度
- Abstract:
-
In this paper,a novel TS model identification algorithm is proposed.The identification algorithm is on the base of the following ideas :Firstly,the Mountain C-Regression method (MCR) is used to automatically identify the number of clusters and initial cluster center.Secondly,the modified Gustafson-Kessl (GK) algorithm is used to obtain an optimal input-output space fuzzy partition matrix which provids the values of premise parameters.Finally,Adaptive Particle Swarm Optimization (APSO) algorithm is adopted to precisely adjust consequent parameters.It can express a given unknown system with a small number of fuzzy rules and is easy to implement.The simulation results show the proposed algorithm realizes the identification of the nonlinear system with relative high accuracy.
参考文献/References:
-
相似文献/References:
更新日期/Last Update:
2014-06-28