|本期目录/Table of Contents|

[1]汤林冰,詹华税.一类抛物型偏微分方程的W1.12弱解存在性[J].集美大学学报(自然科学版),2013,18(5):373-376.
 TANG Lin-bing,ZHAN Hua-shui.W1.12-Weak Solution Existence About Some Parabolic Equation[J].Journal of Jimei University,2013,18(5):373-376.
点击复制

一类抛物型偏微分方程的W1.12弱解存在性(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第18卷
期数:
2013年第5期
页码:
373-376
栏目:
数理科学与信息工程
出版日期:
2013-09-25

文章信息/Info

Title:
W1.12-Weak Solution Existence About Some Parabolic Equation
作者:
汤林冰1詹华税12
(1.集美大学理学院,福建 厦门 361021 ;2.厦门理工学院应用数学学院,福建 厦门 361024 )
Author(s):
TANG Lin-bing1ZHAN Hua-shui12
(1.School of Science,Jimei University,Xiamen 361021,China;2.Department of Mathematics,Xiamen University of Technology,Xiamen 361024,China)
关键词:
抛物型偏微分方程弱极值原理W1.12弱解存在性
Keywords:
parabolic equationweek extremum principle W1.12-weak solutionexistence
分类号:
-
DOI:
-
文献标志码:
-
摘要:
研究了一类更广的抛物型偏微分方程L,的弱极值原理,并分别用泛函和改进的Galerkin方法讨论其W1.12弱解存在性.其中:φ(u)是一个严格单调上升且具有正的上、下界导函数的函数;(aij)满足一般的一致抛物条件.
Abstract:
Functional method and advanced Galerkin method were used to discuss the existence of W1.12weak solution of the parabolic equation: and its week extremum principle was proved. Where φ(u) was strictly monotone function,which derived function had negative lower bound and upper bound,(aij) satisfied general uniform parabolic condition.

参考文献/References:

-

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2014-06-28