[1]汤林冰,詹华税.一类抛物型偏微分方程的W1.12弱解存在性[J].集美大学学报(自然科学版),2013,18(5):373-376.
TANG Lin-bing,ZHAN Hua-shui.W1.12-Weak Solution Existence About Some Parabolic Equation[J].Journal of Jimei University,2013,18(5):373-376.
点击复制
一类抛物型偏微分方程的W1.12弱解存在性(PDF)
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第18卷
- 期数:
-
2013年第5期
- 页码:
-
373-376
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2013-09-25
文章信息/Info
- Title:
-
W1.12-Weak Solution Existence About Some Parabolic Equation
- 作者:
-
汤林冰1; 詹华税1; 2
-
(1.集美大学理学院,福建 厦门 361021 ;2.厦门理工学院应用数学学院,福建 厦门 361024 )
- Author(s):
-
TANG Lin-bing1; ZHAN Hua-shui1; 2
-
(1.School of Science,Jimei University,Xiamen 361021,China;2.Department of Mathematics,Xiamen University of Technology,Xiamen 361024,China)
-
- 关键词:
-
抛物型偏微分方程; 弱极值原理; W1.12弱解; 存在性
- Keywords:
-
parabolic equation; week extremum principle; W1.12-weak solution; existence
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
-
- 摘要:
-
研究了一类更广的抛物型偏微分方程L,的弱极值原理,并分别用泛函和改进的Galerkin方法讨论其W1.12弱解存在性.其中:φ(u)是一个严格单调上升且具有正的上、下界导函数的函数;(aij)满足一般的一致抛物条件.
- Abstract:
-
Functional method and advanced Galerkin method were used to discuss the existence of W1.12weak solution of the parabolic equation: and its week extremum principle was proved. Where φ(u) was strictly monotone function,which derived function had negative lower bound and upper bound,(aij) satisfied general uniform parabolic condition.
参考文献/References:
-
相似文献/References:
更新日期/Last Update:
2014-06-28