|本期目录/Table of Contents|

[1]何红生.拓展映射法求非线性偏微分方程的新解[J].集美大学学报(自然科学版),2015,20(5):387-391.
 HE Hong-sheng.New Solutions for Nonlinear Partial Differential Equations Using the Extended Mapping Method[J].Journal of Jimei University,2015,20(5):387-391.
点击复制

拓展映射法求非线性偏微分方程的新解(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第20卷
期数:
2015年第5期
页码:
387-391
栏目:
数理科学与信息工程
出版日期:
2015-09-30

文章信息/Info

Title:
New Solutions for Nonlinear Partial Differential Equations Using the Extended Mapping Method
作者:
何红生
(集美大学理学院,福建 厦门 361021)
Author(s):
HE Hong-sheng
(School of Science,Jimei University,Xiamen 361021,China)
关键词:
拓展的F展开法Jacobi椭圆函数耦合Klein-Gordon-Schrodinger方程
Keywords:
extended F-expansion methodJacobi elliptic functionscoupled Klein-Gordon-Schrodinger equations
分类号:
-
DOI:
-
文献标志码:
A
摘要:
构建了一种拓展的映射法(F展开法)求解某些非线性偏微分方程(PDEs)的精确解.研究表明,该拓展的映射法不仅能够求得方程的Jacobi椭圆函数的整数幂指数形式解,而且能够求得非线性方程的分数幂指数形式(1+δf2(ξ))1/2的Jacobi椭圆函数解.
Abstract:
The extended F-expansion (or mapping) method is presented to construct exact solutions to some nonlinear partial differential equations (PDEs).It was shown that not only integer exponential Jacobi elliptic function solutions,but also fractional exponential combined Jacobi elliptic function of the form (1+δf2(ξ))1/2 solutions were obtained.

参考文献/References:

-

相似文献/References:

[1]林成龙,梁宗旗.具波动算子的非线性Schrodinger方程的显式精确解[J].集美大学学报(自然科学版),2017,22(1):67.
 LIN Chenglong,LIANG Zongqi.Explicit and Exact Solutions for NonlinearSchrodinger Equation with Wave Operator[J].Journal of Jimei University,2017,22(5):67.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2015-11-03