[1]刘竞坤.H1(RN)上一类半线性椭圆问题的正解与负解[J].集美大学学报(自然科学版),2016,21(3):228-233.
LIU Jing-kun.Positive Solution and Negative Solution for a Class of Semilinear Elliptic Problem in H1(RN)[J].Journal of Jimei University,2016,21(3):228-233.
点击复制
H1(RN)上一类半线性椭圆问题的正解与负解(PDF)
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第21卷
- 期数:
-
2016年第3期
- 页码:
-
228-233
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2016-05-28
文章信息/Info
- Title:
-
Positive Solution and Negative Solution for a Class of Semilinear Elliptic Problem in H1(RN)
- 作者:
-
刘竞坤
-
(集美大学诚毅学院,福建 厦门 361021)
- Author(s):
-
LIU Jing-kun
-
(Chengyi College,Jimei University,Xiamen 361021,China)
-
- 关键词:
-
半线性椭圆问题; 拓扑度理论; 正解与负解; (PS)c序列; 容许同伦
- Keywords:
-
semilinear elliptic problem; topology degree theory; positive solution and negative solution; (PS)c-sequence; admissible homotopy
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
A
- 摘要:
-
考虑一类半线性椭圆问题-Δu+a(x)u=f (x,u),x∈RN,u∈H1(RN),u(x)→0,x→+∞.用拓扑度理论证明在a(x)与f(x,u)关于x是周期的情况下,该方程存在一个正解与一个负解。
- Abstract:
-
Considering the semilinear elliptic problem -Δu+a(x)u=f (x,u),x∈RN,u∈H1(RN),u(x)→0,x→+∞. It is shown that if a(x) and f(x,u) are periodic in the x-variables, then a positive solution and a negative solution of this equation by topology degree theory are obtained.
参考文献/References:
-
相似文献/References:
[1]刘竞坤,范琦.H1(RN)上一类带限制的Schrodinger方程的正负解[J].集美大学学报(自然科学版),2017,22(2):75.
LIU Jingkun,FAN Qi.Positive and Negative Solutions of a Schrodinger Equation with Constraint in H1(RN)[J].Journal of Jimei University,2017,22(3):75.
更新日期/Last Update:
2016-07-01