|本期目录/Table of Contents|

[1]刘竞坤.H1(RN)上一类半线性椭圆问题的正解与负解[J].集美大学学报(自然科学版),2016,21(3):228-233.
 LIU Jing-kun.Positive Solution and Negative Solution for a Class of Semilinear Elliptic Problem in H1(RN)[J].Journal of Jimei University,2016,21(3):228-233.
点击复制

H1(RN)上一类半线性椭圆问题的正解与负解(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第21卷
期数:
2016年第3期
页码:
228-233
栏目:
数理科学与信息工程
出版日期:
2016-05-28

文章信息/Info

Title:
Positive Solution and Negative Solution for a Class of Semilinear Elliptic Problem in H1(RN)
作者:
刘竞坤
(集美大学诚毅学院,福建 厦门 361021)
Author(s):
LIU Jing-kun
(Chengyi College,Jimei University,Xiamen 361021,China)
关键词:
半线性椭圆问题拓扑度理论正解与负解(PS)c序列容许同伦
Keywords:
semilinear elliptic problemtopology degree theorypositive solution and negative solution(PS)c-sequenceadmissible homotopy
分类号:
-
DOI:
-
文献标志码:
A
摘要:
考虑一类半线性椭圆问题-Δu+a(x)u=f (x,u),x∈RN,u∈H1(RN),u(x)→0,x→+∞.用拓扑度理论证明在a(x)与f(x,u)关于x是周期的情况下,该方程存在一个正解与一个负解。
Abstract:
Considering the semilinear elliptic problem -Δu+a(x)u=f (x,u),x∈RN,u∈H1(RN),u(x)→0,x→+∞. It is shown that if a(x) and f(x,u) are periodic in the x-variables, then a positive solution and a negative solution of this equation by topology degree theory are obtained.

参考文献/References:

-

相似文献/References:

[1]刘竞坤,范琦.H1(RN)上一类带限制的Schrodinger方程的正负解[J].集美大学学报(自然科学版),2017,22(2):75.
 LIU Jingkun,FAN Qi.Positive and Negative Solutions of a Schrodinger Equation with Constraint in H1(RN)[J].Journal of Jimei University,2017,22(3):75.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-07-01