|本期目录/Table of Contents|

[1]林成龙,梁宗旗.具波动算子的非线性Schrodinger方程的显式精确解[J].集美大学学报(自然科学版),2017,22(1):67-72.
 LIN Chenglong,LIANG Zongqi.Explicit and Exact Solutions for NonlinearSchrodinger Equation with Wave Operator[J].Journal of Jimei University,2017,22(1):67-72.
点击复制

具波动算子的非线性Schrodinger方程的显式精确解(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第22卷
期数:
2017年第1期
页码:
67-72
栏目:
数理科学与信息工程
出版日期:
2017-01-28

文章信息/Info

Title:
Explicit and Exact Solutions for NonlinearSchrodinger Equation with Wave Operator
作者:
林成龙梁宗旗
(集美大学理学院,福建 厦门 361021)
Author(s):
LIN ChenglongLIANG Zongqi
(School of Science,Jimei University,Xiamen 361021,China)
关键词:
波动算子非线性Schrodinger方程奇点Jacobi椭圆函数精确解
Keywords:
wave operatornonlinear Schrodinger equationsingularityJacobi elliptic functionexact solution.
分类号:
-
DOI:
-
文献标志码:
A
摘要:
研究了具有波动算子的非线性Schrodinger方程显式精确解问题。先借助于一个规范行波变化,将该方程转化为微分方程动力系统,求出其奇点并给出其类型;采用直接积分法在特殊情况下得到该方程的一组显式精确解;最后利用预设Jacobi椭圆函数构造方法,得到了该方程多种形式的新的显式精确解。
Abstract:
In this paper,the explicit and exact solutions for a class of nonlinear Schrodinger equation with wave operator were studied.With the help of a specific travelling wave transformation,the equation was transformed into a dynamic differential system,its singularity was obtained and its type was given.A set of explicit exact solutions of the equation were obtained by the direct integral method in special cases.Finally,the new forms of explicit and exact solutions of the equation were obtained by using the preset Jacobi elliptic function method.

参考文献/References:

-

相似文献/References:

[1]林成龙,梁宗旗.具波动算子非线性Schrodinger方程行波解的稳定性[J].集美大学学报(自然科学版),2016,21(6):466.
 LIN Cheng-long,LIANG Zong-qi.Stability of the Traveling Wave Solutions About the Nonlinear Schrodinger Equation with Wave Operator[J].Journal of Jimei University,2016,21(1):466.
[2]闫瑞娥,梁宗旗.具波动算子非线性Schrodinger方程线性化差分格式[J].集美大学学报(自然科学版),2020,25(2):146.
 YAN Ruie,LIANG Zongqi.Linearized Difference Scheme for Nonlinear Schrodinger Equation with Wave Operator[J].Journal of Jimei University,2020,25(1):146.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-03-09