[1]王博宇,宾红华,黄振坤.时标上含N段激活函数2-D网络的指数周期轨迹[J].集美大学学报(自然科学版),2017,22(1):61-66.
WANG Boyu,BIN Honghua,HUANG Zhenkun.Exponentially Periodic Orbits of 2-D Networks with N-Segment Activation on Time Scales[J].Journal of Jimei University,2017,22(1):61-66.
点击复制
时标上含N段激活函数2-D网络的指数周期轨迹(PDF)
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第22卷
- 期数:
-
2017年第1期
- 页码:
-
61-66
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2017-01-28
文章信息/Info
- Title:
-
Exponentially Periodic Orbits of 2-D Networks with N-Segment Activation on Time Scales
- 作者:
-
王博宇; 宾红华; 黄振坤
-
(集美大学理学院,福建 厦门 361021)
- Author(s):
-
WANG Boyu; BIN Honghua; HUANG Zhenkun
-
(School of Science,Jimei University,Xiamen 361021,China)
-
- 关键词:
-
2-D网络; 不变集; 周期解; 神经网络
- Keywords:
-
2-D networks; invariant set; periodic solution; neural network
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
A
- 摘要:
-
研究了时标上具有N分段激活函数2-D网络的多重周期解。通过运用激活函数的定义分析了状态空间,获得了新的标准来保证模型有N2正不变集。通过压缩映射原理证明了网络有指数型周期轨迹,模拟的例子证明了结果的有效性。
- Abstract:
-
In this paper,multiperiodicty was studied for 2-D networks with N-segment activation on time scales.By using the definition of activation to analyze the state space,new criteria was obtained to guarantee that the model has N2 positively invariant sets.The exponentially periodic orbits for the network are proved by contraction mapping principle.A simulation example is presented to demonstrate the effectiveness of the results.
参考文献/References:
-
相似文献/References:
更新日期/Last Update:
2017-03-09