|本期目录/Table of Contents|

[1]刘竞坤,范琦.H1(RN)上一类带限制的Schrodinger方程的正负解[J].集美大学学报(自然科学版),2017,22(2):75-80.
 LIU Jingkun,FAN Qi.Positive and Negative Solutions of a Schrodinger Equation with Constraint in H1(RN)[J].Journal of Jimei University,2017,22(2):75-80.
点击复制

H1(RN)上一类带限制的Schrodinger方程的正负解(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第22卷
期数:
2017年第2期
页码:
75-80
栏目:
数理科学与信息工程
出版日期:
2017-03-28

文章信息/Info

Title:
Positive and Negative Solutions of a Schrodinger Equation with Constraint in H1(RN)
作者:
刘竞坤1范琦2
(1.集美大学诚毅学院,福建 厦门 361021;2.厦门思泰克智能科技股份有限公司,福建 厦门 361100)
Author(s):
LIU Jingkun1FAN Qi2
(1.Chengyi University College,Jimei University,Xiamen 361021,China;2.Xiamen Sinic-Tek Intelligent Technology Co.,Ltd,Xiamen 361100,China)
关键词:
Schrodinger方程正解负解周期(PS)c序列拓扑度理论
Keywords:
Schrodinger equationpositive solutionnegative solutionperiod(PS)c-sequencetopology degree theory
分类号:
-
DOI:
-
文献标志码:
A
摘要:
应用变分方法,以拓扑度理论为依据,研究H1(RN)空间上一类带限制的半线性Schrodinger方程。通过构造适当的伪梯度向量场,解决带限制的半线性Schrodinger方程的Cauchy问题,证明其在周期和适当限制条件下解的存在性,并获得带限制的半线性椭圆特征问题的一个正解与一个负解。
Abstract:
Based on topology degree theory, variational method was applied to research a class of semilinear Schrodinger equation in H1(RN)with constraint in this paper. By constructing pseudo-gradient vector field, the Cauchy problem was solved and the existence of solution under the periodic and appropriate condition was proved. Finally, a positive solution and a negative solution of the semilinear elliptic problem with constraint were obtained.

参考文献/References:

-

相似文献/References:

[1]陈应生,汪东树.z非线性四阶两点积分边值问题正解的存在性[J].集美大学学报(自然科学版),2012,17(5):379.
 CHEN Ying-shengWANG Dong-shu.Existence of Positive Solutions for Nonlinear Fourth-order Two-point Integral Boundary Value Problems[J].Journal of Jimei University,2012,17(2):379.
[2]周梦云,蓝永艺.一类拟线性薛定谔方程解的存在性[J].集美大学学报(自然科学版),2024,29(4):365.
 ZHOU Mengyun,LAN Yongyi.Existence of Solutions for a Class of Quasilinear Schrodinger Equation[J].Journal of Jimei University,2024,29(2):365.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2017-05-19