[1]黄龙光.ε-变分不等式及其对偶性[J].集美大学学报(自然科学版),2020,25(5):376-378.
HUANG Longguang.ε-Variational Inequality and Its Duality[J].Journal of Jimei University,2020,25(5):376-378.
点击复制
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第25卷
- 期数:
-
2020年第5期
- 页码:
-
376-378
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2020-09-30
文章信息/Info
- Title:
-
ε-Variational Inequality and Its Duality
- 作者:
-
黄龙光
-
(集美大学理学院,福建 厦门 361021 )
- Author(s):
-
HUANG Longguang
-
(School of Science,Jimei University,Xiamen 361021,China)
-
- 关键词:
-
ε-变分不等式; ε-次微分; 对偶问题; ε-最优解
- Keywords:
-
ε-variational inequality; ε-subdifferential; dual problem; ε-optimal solution
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
-
- 摘要:
-
利用ε-次微分和凸函数的共轭函数,讨论Banach空间带集值映射的ε-变分不等式及其对偶性,给出无约束条件下凸优化问题的ε-最优解、ε-变分不等式及其对偶问题解之间的若干特征刻画。
- Abstract:
-
The ε-variational inequality with set-valued mapping and its duality were discussed by the ε-subdifferential and conjugate function of convex function in Banach space.Some characteristic relationships for solutions of problems discussing among ε-optimal solutions of convex optimization problems with non-constraint condition,ε-variational inequality and its duality were presented.
参考文献/References:
-
相似文献/References:
更新日期/Last Update:
2020-11-04