|本期目录/Table of Contents|

[1]王凤筵.随机单种群Gompertz增长模型的稳定性[J].集美大学学报(自然科学版),2021,26(2):125-128.
 WANG Fengyan.Stability for a Stochastic Single Species Gompertz Growth Model[J].Journal of Jimei University,2021,26(2):125-128.
点击复制

随机单种群Gompertz增长模型的稳定性(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第26卷
期数:
2021年第2期
页码:
125-128
栏目:
数理科学与信息工程
出版日期:
2021-03-28

文章信息/Info

Title:
Stability for a Stochastic Single Species Gompertz Growth Model
作者:
王凤筵
(集美大学理学院,福建 厦门 361021)
Author(s):
WANG Fengyan
(School of Science,Jimei University,Xiamen 361021,China)
关键词:
Gompertz模型稳定性依均值平方最终随机有界
Keywords:
Gompertz modelstabilityin the mean squarestochastical ultimate boundedness
分类号:
-
DOI:
-
文献标志码:
-
摘要:
研究一个随机单种群Gompertz增长模型,证明方程的每个从正初始值出发的解都是一个全局正解,得到这个解及其均值的解析表达式。引入随机变量依均值吸引和依均方吸引的概念,研究随机Gompertz方程,证明随机Gompertz方程的解是依均值吸引和依均值平方全局吸引,并存在唯一依均值的平方全局稳定的随机解。最后,证明随机Gompertz方程的解是最终随机有界的。
Abstract:
A stochastic single species Gompertz growth model was considered.It was shown that the equation had a global positive solution starting from the positive initial value and obtain its explicit expression.The expectation of the solution was also obtained.It was obtained that the equation was globally attractive in the mean square,and it was shown that there existed a unique solution of the model which was globally stable in the mean square.Finally,it was established that the solution of the equation was stochastically ultimately bounded.

参考文献/References:

-

相似文献/References:

[1]辛云冰.缓变系数线性中立型系统的稳定性[J].集美大学学报(自然科学版),2010,15(4):308.
 XIN Yun-bing.The Stability of Slowly Varying Coefficient with theNeutral Functional Differential Equations[J].Journal of Jimei University,2010,15(2):308.
[2]陈建弘,黄龙光.Minty型含参数拟变分锥的稳定性[J].集美大学学报(自然科学版),2012,17(4):301.
 CHEN Jian-hongHUANG Long-guang.Stability of Parametric Quasivariational Cone of the Minty Type[J].Journal of Jimei University,2012,17(2):301.
[3]吴海龙,陈雪芳,王诚,等.章鱼内脏胰蛋白酶抑制剂的分离纯化与性质研究[J].集美大学学报(自然科学版),2013,18(4):246.
 WU Hai-longCHEN Xue-fang,WANG Cheng,CAI Qiu-feng,et al.Purification and Characterization of a Trypsin Inhibitor from the Viscera of Octopus(Octopus fangsiao)[J].Journal of Jimei University,2013,18(2):246.
[4]钟小容,王凤筵,张树文,等.捕食者染病的生态流行病系统的稳定性[J].集美大学学报(自然科学版),2014,19(6):459.
 ZHONG Xiao-rong,WANG Feng-yan,ZHANG Shu-wen,et al.The Stability of Eco-epidemiological Model with Infected Predator[J].Journal of Jimei University,2014,19(2):459.
[5]许文彬.p-拉普拉斯抛物型方程解的稳定性[J].集美大学学报(自然科学版),2016,21(6):471.
 XU Wen-bin.On the Stability of a Parabolic Equation Related to the p-Laplacian[J].Journal of Jimei University,2016,21(2):471.
[6]周臻,詹华税.一类非线性退化抛物方程的解[J].集美大学学报(自然科学版),2017,22(6):70.
 ZHOU Zhen,ZHAN Huashui.Solutions of a Nonlinear Degenerate Parabolic Equation[J].Journal of Jimei University,2017,22(2):70.
[7]陈淑琴,詹华税.一类非线性双曲抛物方程熵解的稳定性[J].集美大学学报(自然科学版),2011,16(4):306.
 CHEN Shu-qin,ZHAN Hua-shui.Stability of Entropy Solution to the Cauchy Problem for a Nonlinear Hyperbolic-Parabolic Equation[J].Journal of Jimei University,2011,16(2):306.
[8]潘冰青,刘光明,曹敏杰,等.鲤鱼胶原蛋白的过敏原性研究[J].集美大学学报(自然科学版),2011,16(5):340.
 PAN Bing-qing,LIU Guang-ming,CAO Min-jie,et al.IgEStudy on the Allergen of Collagen Isolated fromSkin of Carp(Cyprinus carpio)[J].Journal of Jimei University,2011,16(2):340.
[9]叶星旸.基于分数阶微分方程的木马病毒传播规律[J].集美大学学报(自然科学版),2019,24(2):145.
 YE Xingyang.An Epidemic Model of the Trojan Virus Propagation Based on Fractional Differential Equations[J].Journal of Jimei University,2019,24(2):145.
[10]古强,王荣杰.带恒功率负载的Boost变换器建模与稳定性分析[J].集美大学学报(自然科学版),2020,25(1):57.
 GU Qiang,WANG Rongjie.Modeling and Stability Analysis on Boost Converter Feeding Constant Power Load[J].Journal of Jimei University,2020,25(2):57.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2021-05-17