|本期目录/Table of Contents|

[1]曾羽群.一类发展的p(x)-Laplace方程解的存在唯一性[J].集美大学学报(自然科学版),2021,26(2):119-124.
 ZENG Yuqun.Existence and Uniqueness of Solutions to an Evolutionary p(x)-Laplace Equation[J].Journal of Jimei University,2021,26(2):119-124.
点击复制

一类发展的p(x)-Laplace方程解的存在唯一性(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第26卷
期数:
2021年第2期
页码:
119-124
栏目:
数理科学与信息工程
出版日期:
2021-03-28

文章信息/Info

Title:
Existence and Uniqueness of Solutions to an Evolutionary p(x)-Laplace Equation
作者:
曾羽群
(集美大学理学院,福建 厦门 361021)
Author(s):
ZENG Yuqun
(School of Science,Jimei University,Xiamen 361021,China)
关键词:
发展的p(x)-Laplace方程存在唯一性稳定性部分边界条件子流形
Keywords:
evolutionary p(x)-Laplace equationexistence and uniquenessstabilitypartial boundary value conditionsubmanifold
分类号:
-
DOI:
-
文献标志码:
-
摘要:
讨论一类发展的p(x)-Laplace方程ut=div(a(x,t)∣△u∣p(x)-2△u)+f(u,x,t)解的存在唯一性。不同于此前的研究,文中假设a(x,t)≥0,且当x∈Ω时,a(x,t)>0,解的稳定性是建立在一个合理的部分边界条件u(x,t)=0,(x,t)∈Σ1上,其中Σ1 Ω(0,T)仅仅是一个子流形。
Abstract:
The following evolutionary p(x)-Laplace equations t=div(a(x,t)∣△u∣p(x)-2△u)+f(u,x,t) were discussed,and the existence and the uniqueness of weak solutions were proved.Different from the previous works,it was assumed a(x,t)≥0and a(x,t)x∈Ω>0 in this paper.The stability of weak solutions was based on a reasonable partial boundary value condition u(x,t)=0,(x,t)∈Σ1,where Σ1Ω×(0,T) was just a submanifold.

参考文献/References:

-

相似文献/References:

[1]黄幼林,魏春金,张树文.周期随机捕食-食饵系统的周期解的存在性[J].集美大学学报(自然科学版),2022,27(2):171.
 HUANG Youlin,WEI Chunjin,ZHANG Shuwen.The Existence of Periodic Solution of Periodic Stochastic Predator-Prey Model[J].Journal of Jimei University,2022,27(2):171.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2021-05-17