[1]陈景华,陈雪娟.Riesz空间分布阶的分数阶扩散方程的数值模拟[J].集美大学学报(自然科学版),2021,26(2):97-103.
CHEN Jinghua,CHEN Xuejuan.Numerical Method for the Distributed-Order Riesz Space Fractional Diffusion Equation[J].Journal of Jimei University,2021,26(2):97-103.
点击复制
Riesz空间分布阶的分数阶扩散方程的数值模拟(PDF)
《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]
- 卷:
-
第26卷
- 期数:
-
2021年第2期
- 页码:
-
97-103
- 栏目:
-
数理科学与信息工程
- 出版日期:
-
2021-03-28
文章信息/Info
- Title:
-
Numerical Method for the Distributed-Order Riesz Space Fractional Diffusion Equation
- 作者:
-
陈景华1; 2; 陈雪娟1; 2
-
(1.集美大学理学院,福建 厦门 361021;2.集美大学理学院数字福建大数据建模与智能计算研究所,福建 厦门 361021)
- Author(s):
-
CHEN Jinghua1; 2; CHEN Xuejuan1; 2
-
(1.School of Science,Jimei University,Xiamen 361021,China;2.Digital Fujian Big Data Modeling and Intelligent Computing Institute,School of Science,Jimei University,Xiamen 361021,China)
-
- 关键词:
-
空间分布阶; 分数阶微分方程; 稳定性; 收敛性; 数值离散
- Keywords:
-
space distributedorder; fractional differential equation; stability; convergence; numerical discretization
- 分类号:
-
-
- DOI:
-
-
- 文献标志码:
-
-
- 摘要:
-
提出一种求解Riesz空间分布阶的分数阶扩散方程的数值方法。 利用辛普森数值求积公式,将分布阶微分方程离散为一个多项分数阶导数的微分方程;利用四阶差分格式求解此具有多项分数阶导数的微分方程,并运用能量法分析数值格式的稳定性和收敛性。同时,给出数值例子,说明所建立的数值离散格式的有效性。
- Abstract:
-
A numerical method for solving the fractional diffusion equation of the distributed-order Riesz space fractional diffusion equation was proposed.The distributedorder differential equation was discretized into a differential equation with a multi-term equation by Simpson quadrature formula.The fourth-order difference approximation was derived to solve the resulting multi-term equation.The stability and convergence of the numerical scheme were analyzed by energy method,and a numerical example was given to illustrate the validity of the established numerical discrete scheme.
参考文献/References:
-
相似文献/References:
[1]张豫川,周宗福.带有积分条件的分数阶微分方程边值问题耦合系统[J].集美大学学报(自然科学版),2013,18(4):297.
[2]叶星旸.基于分数阶微分方程的木马病毒传播规律[J].集美大学学报(自然科学版),2019,24(2):145.
YE Xingyang.An Epidemic Model of the Trojan Virus Propagation Based on Fractional Differential Equations[J].Journal of Jimei University,2019,24(2):145.
更新日期/Last Update:
2021-05-17