|本期目录/Table of Contents|

[1]陈景华,陈雪娟.Riesz空间分布阶的分数阶扩散方程的数值模拟[J].集美大学学报(自然科学版),2021,26(2):97-103.
 CHEN Jinghua,CHEN Xuejuan.Numerical Method for the Distributed-Order Riesz Space Fractional Diffusion Equation[J].Journal of Jimei University,2021,26(2):97-103.
点击复制

Riesz空间分布阶的分数阶扩散方程的数值模拟(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第26卷
期数:
2021年第2期
页码:
97-103
栏目:
数理科学与信息工程
出版日期:
2021-03-28

文章信息/Info

Title:
Numerical Method for the Distributed-Order Riesz Space Fractional Diffusion Equation
作者:
陈景华12陈雪娟12
(1.集美大学理学院,福建 厦门 361021;2.集美大学理学院数字福建大数据建模与智能计算研究所,福建 厦门 361021)
Author(s):
CHEN Jinghua12CHEN Xuejuan12
(1.School of Science,Jimei University,Xiamen 361021,China;2.Digital Fujian Big Data Modeling and Intelligent Computing Institute,School of Science,Jimei University,Xiamen 361021,China)
关键词:
空间分布阶分数阶微分方程稳定性收敛性数值离散
Keywords:
space distributedorderfractional differential equationstabilityconvergence numerical discretization
分类号:
-
DOI:
-
文献标志码:
-
摘要:
提出一种求解Riesz空间分布阶的分数阶扩散方程的数值方法。 利用辛普森数值求积公式,将分布阶微分方程离散为一个多项分数阶导数的微分方程;利用四阶差分格式求解此具有多项分数阶导数的微分方程,并运用能量法分析数值格式的稳定性和收敛性。同时,给出数值例子,说明所建立的数值离散格式的有效性。
Abstract:
A numerical method for solving the fractional diffusion equation of the distributed-order Riesz space fractional diffusion equation was proposed.The distributedorder differential equation was discretized into a differential equation with a multi-term equation by Simpson quadrature formula.The fourth-order difference approximation was derived to solve the resulting multi-term equation.The stability and convergence of the numerical scheme were analyzed by energy method,and a numerical example was given to illustrate the validity of the established numerical discrete scheme.

参考文献/References:

-

相似文献/References:

[1]张豫川,周宗福.带有积分条件的分数阶微分方程边值问题耦合系统[J].集美大学学报(自然科学版),2013,18(4):297.
[2]叶星旸.基于分数阶微分方程的木马病毒传播规律[J].集美大学学报(自然科学版),2019,24(2):145.
 YE Xingyang.An Epidemic Model of the Trojan Virus Propagation Based on Fractional Differential Equations[J].Journal of Jimei University,2019,24(2):145.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2021-05-17