|本期目录/Table of Contents|

[1]陈建弘,黄龙光.Minty型含参数拟变分锥的稳定性[J].集美大学学报(自然科学版),2012,17(4):301-304.
 CHEN Jian-hongHUANG Long-guang.Stability of Parametric Quasivariational Cone of the Minty Type[J].Journal of Jimei University,2012,17(4):301-304.
点击复制

Minty型含参数拟变分锥的稳定性(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第17卷
期数:
2012年第4期
页码:
301-304
栏目:
数理科学与信息工程
出版日期:
2012-07-25

文章信息/Info

Title:
Stability of Parametric Quasivariational Cone of the Minty Type
作者:
陈建弘黄龙光
(集美大学理学院,福建 厦门 361021)
Author(s):
CHEN Jian-hongHUANG Long-guang
(School of Science,Jimei University,Xiamen 361021,China)
关键词:
拟变分锥稳定性连续性闭性
Keywords:
quasivariational conestabilitysemicontinuityclosedness
分类号:
-
DOI:
-
文献标志码:
-
摘要:
       通过集值映射的各种上、下半连续性,研究一类参数拟变分锥的Minty型类似不等式的解集特征,给出其解集,近似解集的上、下半连续的充分性条件,进而研究Minty型含参数拟变分锥的稳定性,并通过建立近似解集的上半连续的充分条件给出拟变分锥优化问题解的刻画
Abstract:
Stability of a parametric quasivariational cone of the Minty type was studied in various sufficient conditions characterizing upper and lower semicontinuity of the solution sets as well as the approximate solution sets,which were similar to the solution sets of inequality.Sufficient conditions ensuring upper semicontinuity of the approximate solution sets of an optimization problem with quasivariational cone constraints were also presented

参考文献/References:

-

相似文献/References:

[1]辛云冰.缓变系数线性中立型系统的稳定性[J].集美大学学报(自然科学版),2010,15(4):308.
 XIN Yun-bing.The Stability of Slowly Varying Coefficient with theNeutral Functional Differential Equations[J].Journal of Jimei University,2010,15(4):308.
[2]吴海龙,陈雪芳,王诚,等.章鱼内脏胰蛋白酶抑制剂的分离纯化与性质研究[J].集美大学学报(自然科学版),2013,18(4):246.
 WU Hai-longCHEN Xue-fang,WANG Cheng,CAI Qiu-feng,et al.Purification and Characterization of a Trypsin Inhibitor from the Viscera of Octopus(Octopus fangsiao)[J].Journal of Jimei University,2013,18(4):246.
[3]钟小容,王凤筵,张树文,等.捕食者染病的生态流行病系统的稳定性[J].集美大学学报(自然科学版),2014,19(6):459.
 ZHONG Xiao-rong,WANG Feng-yan,ZHANG Shu-wen,et al.The Stability of Eco-epidemiological Model with Infected Predator[J].Journal of Jimei University,2014,19(4):459.
[4]许文彬.p-拉普拉斯抛物型方程解的稳定性[J].集美大学学报(自然科学版),2016,21(6):471.
 XU Wen-bin.On the Stability of a Parabolic Equation Related to the p-Laplacian[J].Journal of Jimei University,2016,21(4):471.
[5]周臻,詹华税.一类非线性退化抛物方程的解[J].集美大学学报(自然科学版),2017,22(6):70.
 ZHOU Zhen,ZHAN Huashui.Solutions of a Nonlinear Degenerate Parabolic Equation[J].Journal of Jimei University,2017,22(4):70.
[6]陈淑琴,詹华税.一类非线性双曲抛物方程熵解的稳定性[J].集美大学学报(自然科学版),2011,16(4):306.
 CHEN Shu-qin,ZHAN Hua-shui.Stability of Entropy Solution to the Cauchy Problem for a Nonlinear Hyperbolic-Parabolic Equation[J].Journal of Jimei University,2011,16(4):306.
[7]潘冰青,刘光明,曹敏杰,等.鲤鱼胶原蛋白的过敏原性研究[J].集美大学学报(自然科学版),2011,16(5):340.
 PAN Bing-qing,LIU Guang-ming,CAO Min-jie,et al.IgEStudy on the Allergen of Collagen Isolated fromSkin of Carp(Cyprinus carpio)[J].Journal of Jimei University,2011,16(4):340.
[8]叶星旸.基于分数阶微分方程的木马病毒传播规律[J].集美大学学报(自然科学版),2019,24(2):145.
 YE Xingyang.An Epidemic Model of the Trojan Virus Propagation Based on Fractional Differential Equations[J].Journal of Jimei University,2019,24(4):145.
[9]古强,王荣杰.带恒功率负载的Boost变换器建模与稳定性分析[J].集美大学学报(自然科学版),2020,25(1):57.
 GU Qiang,WANG Rongjie.Modeling and Stability Analysis on Boost Converter Feeding Constant Power Load[J].Journal of Jimei University,2020,25(4):57.
[10]闫瑞娥,梁宗旗.具波动算子非线性Schrodinger方程线性化差分格式[J].集美大学学报(自然科学版),2020,25(2):146.
 YAN Ruie,LIANG Zongqi.Linearized Difference Scheme for Nonlinear Schrodinger Equation with Wave Operator[J].Journal of Jimei University,2020,25(4):146.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2014-06-28