|本期目录/Table of Contents|

[1]闫瑞娥,梁宗旗.具波动算子非线性Schrodinger方程线性化差分格式[J].集美大学学报(自然科学版),2020,25(2):146-151.
 YAN Ruie,LIANG Zongqi.Linearized Difference Scheme for Nonlinear Schrodinger Equation with Wave Operator[J].Journal of Jimei University,2020,25(2):146-151.
点击复制

具波动算子非线性Schrodinger方程线性化差分格式(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第25卷
期数:
2020年第2期
页码:
146-151
栏目:
数理科学与信息工程
出版日期:
2020-03-28

文章信息/Info

Title:
Linearized Difference Scheme for Nonlinear Schrodinger Equation with Wave Operator
作者:
闫瑞娥梁宗旗
(集美大学理学院,福建 厦门 361021)
Author(s):
YAN RuieLIANG Zongqi
(School of Science,Jimei University,Xiamen 361021,China)
关键词:
非线性Schrodinger方程波动算子收敛性稳定性线性化格式
Keywords:
nonlinear schrodinger equationwave operatorconvergencestabilitylinearization scheme
分类号:
-
DOI:
-
文献标志码:
-
摘要:
构造了具波动算子的非线性Schrodinger方程的一种线性化差分格式。即在守恒非线性差分格式的基础上,利用Taylor方法展开非线性项,引入小参数ε得到该方程的线性化差分格式。利用Fourier方法证明了其格式的收敛性和稳定性。最后通过数值例子验证了该方法的可信性和有效性。
Abstract:
In this paper,the nonlinear Schrodinger equation with wave operator was constructed by a linearized difference scheme.In the conservation of nonlinear difference scheme on the basis of the method of Taylor expansion.The nonlinear term was introduced by the small parameter equation of linear difference scheme.Using the Fourier method,the convergence and stability of the format were proved.At last,through numerical example,the credibility and validity of the method were validated.

参考文献/References:

-

相似文献/References:

[1]林成龙,梁宗旗.具波动算子非线性Schrodinger方程行波解的稳定性[J].集美大学学报(自然科学版),2016,21(6):466.
 LIN Cheng-long,LIANG Zong-qi.Stability of the Traveling Wave Solutions About the Nonlinear Schrodinger Equation with Wave Operator[J].Journal of Jimei University,2016,21(2):466.
[2]林成龙,梁宗旗.具波动算子的非线性Schrodinger方程的显式精确解[J].集美大学学报(自然科学版),2017,22(1):67.
 LIN Chenglong,LIANG Zongqi.Explicit and Exact Solutions for NonlinearSchrodinger Equation with Wave Operator[J].Journal of Jimei University,2017,22(2):67.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2020-05-22