|本期目录/Table of Contents|

[1]李陶玉,黄振坤.Pachpatte积分不等式的比例时滞混合系统稳定性[J].集美大学学报(自然科学版),2024,29(1):84-89.
 LI Taoyu,HUANG Zhenkun.Stability of Hybrid Systems with Proportional Delay Based on Pachpatte’s Integral Inequalities[J].Journal of Jimei University,2024,29(1):84-89.
点击复制

Pachpatte积分不等式的比例时滞混合系统稳定性(PDF)
分享到:

《集美大学学报(自然科学版)》[ISSN:1007-7405/CN:35-1186/N]

卷:
第29卷
期数:
2024年第1期
页码:
84-89
栏目:
数理科学与信息工程
出版日期:
2024-01-28

文章信息/Info

Title:
Stability of Hybrid Systems with Proportional Delay Based on Pachpatte’s Integral Inequalities
作者:
李陶玉黄振坤
集美大学理学院,福建 厦门361021
Author(s):
LI TaoyuHUANG Zhenkun
School of Science,Jimei University,Xiamen 361021,China
关键词:
稳定性脉冲与切换系统比例时滞Pachpatte积分不等式
Keywords:
stabilityimpulsive and switching systemsproportional delayPachpatte’s integral inequalities
分类号:
-
DOI:
-
文献标志码:
A
摘要:
研究一类具有比例时滞的混合脉冲切换系统。对于比例时滞,通常通过时间变换将比例时滞转换为常数时滞,并结合相应的判据得到稳定性结果。不再基于时间变换,而是利用切换Lyapunov函数和Pachpatte积分不等式,建立任意条件脉冲切换下指数稳定性和渐近稳定性的新判据。最后,通过实例来验证理论结果,结果表明,本文所设计的脉冲控制可以使具有比例时滞的混沌系统趋于稳定。
Abstract:
A class of hybrid impulsive and switching systems with proportional delay was studied in this paper.For proportional delay, converting proportional delay into constant delay by time transformation is adopted in the literature to obtain the stability results combined with the corresponding criteria.Without time transformation, switched Lyapunov function and Pachpatte’s integral inequalities were employed in this paper to establish new general criteria for exponential stability and asymptotic stability under arbitrary conditional impulsive switching.Finally,an example was given to illustrate the theoretical results.It was shown that the chaotic system with proportional delay tends to be stable by the designed impulsive control.

参考文献/References:

相似文献/References:

[1]辛云冰.缓变系数线性中立型系统的稳定性[J].集美大学学报(自然科学版),2010,15(4):308.
 XIN Yun-bing.The Stability of Slowly Varying Coefficient with theNeutral Functional Differential Equations[J].Journal of Jimei University,2010,15(1):308.
[2]陈建弘,黄龙光.Minty型含参数拟变分锥的稳定性[J].集美大学学报(自然科学版),2012,17(4):301.
 CHEN Jian-hongHUANG Long-guang.Stability of Parametric Quasivariational Cone of the Minty Type[J].Journal of Jimei University,2012,17(1):301.
[3]吴海龙,陈雪芳,王诚,等.章鱼内脏胰蛋白酶抑制剂的分离纯化与性质研究[J].集美大学学报(自然科学版),2013,18(4):246.
 WU Hai-longCHEN Xue-fang,WANG Cheng,CAI Qiu-feng,et al.Purification and Characterization of a Trypsin Inhibitor from the Viscera of Octopus(Octopus fangsiao)[J].Journal of Jimei University,2013,18(1):246.
[4]钟小容,王凤筵,张树文,等.捕食者染病的生态流行病系统的稳定性[J].集美大学学报(自然科学版),2014,19(6):459.
 ZHONG Xiao-rong,WANG Feng-yan,ZHANG Shu-wen,et al.The Stability of Eco-epidemiological Model with Infected Predator[J].Journal of Jimei University,2014,19(1):459.
[5]许文彬.p-拉普拉斯抛物型方程解的稳定性[J].集美大学学报(自然科学版),2016,21(6):471.
 XU Wen-bin.On the Stability of a Parabolic Equation Related to the p-Laplacian[J].Journal of Jimei University,2016,21(1):471.
[6]周臻,詹华税.一类非线性退化抛物方程的解[J].集美大学学报(自然科学版),2017,22(6):70.
 ZHOU Zhen,ZHAN Huashui.Solutions of a Nonlinear Degenerate Parabolic Equation[J].Journal of Jimei University,2017,22(1):70.
[7]陈淑琴,詹华税.一类非线性双曲抛物方程熵解的稳定性[J].集美大学学报(自然科学版),2011,16(4):306.
 CHEN Shu-qin,ZHAN Hua-shui.Stability of Entropy Solution to the Cauchy Problem for a Nonlinear Hyperbolic-Parabolic Equation[J].Journal of Jimei University,2011,16(1):306.
[8]潘冰青,刘光明,曹敏杰,等.鲤鱼胶原蛋白的过敏原性研究[J].集美大学学报(自然科学版),2011,16(5):340.
 PAN Bing-qing,LIU Guang-ming,CAO Min-jie,et al.IgEStudy on the Allergen of Collagen Isolated fromSkin of Carp(Cyprinus carpio)[J].Journal of Jimei University,2011,16(1):340.
[9]叶星旸.基于分数阶微分方程的木马病毒传播规律[J].集美大学学报(自然科学版),2019,24(2):145.
 YE Xingyang.An Epidemic Model of the Trojan Virus Propagation Based on Fractional Differential Equations[J].Journal of Jimei University,2019,24(1):145.
[10]古强,王荣杰.带恒功率负载的Boost变换器建模与稳定性分析[J].集美大学学报(自然科学版),2020,25(1):57.
 GU Qiang,WANG Rongjie.Modeling and Stability Analysis on Boost Converter Feeding Constant Power Load[J].Journal of Jimei University,2020,25(1):57.

备注/Memo

备注/Memo:
更新日期/Last Update: 2024-04-25